This paper considers the Steiner Minimal Tree (SMT) problem in the rectilinear and octilinear planes. The study is motivated by the physical design of VLSI: The rectilinear case corresponds to the currently used M-...This paper considers the Steiner Minimal Tree (SMT) problem in the rectilinear and octilinear planes. The study is motivated by the physical design of VLSI: The rectilinear case corresponds to the currently used M-architecture, which uses either horizontal or vertical routing, while the octilinear case corresponds to a new routing technique, X-architecture, that is based on the pervasive use of diagonal directions. The experimental studies show that the X-architecture demonstrates a length reduction of more than 10-20%. In this paper, we make a theoretical study on the lengths of SMTs in these two planes. Our mathematical analysis confirms that the length reduction is significant as the previous experimental studies claimed, but the reduction for three points is not as significant as for two points. We also obtain the lower and upper bounds on the expected lengths of SMTs in these two planes for arbitrary number of points.展开更多
基金the National Natural Science Foundation of China under Grant Nos.10401038,60373012 and 70221001the Key Project of Chinese Ministry of Education under Grant No.106008
文摘This paper considers the Steiner Minimal Tree (SMT) problem in the rectilinear and octilinear planes. The study is motivated by the physical design of VLSI: The rectilinear case corresponds to the currently used M-architecture, which uses either horizontal or vertical routing, while the octilinear case corresponds to a new routing technique, X-architecture, that is based on the pervasive use of diagonal directions. The experimental studies show that the X-architecture demonstrates a length reduction of more than 10-20%. In this paper, we make a theoretical study on the lengths of SMTs in these two planes. Our mathematical analysis confirms that the length reduction is significant as the previous experimental studies claimed, but the reduction for three points is not as significant as for two points. We also obtain the lower and upper bounds on the expected lengths of SMTs in these two planes for arbitrary number of points.