Mixture of phosphoric and sulfuric acid solutions has been used to investigate the dissolution of natural phosphates (PN) by DRC. The effect of concentration, particle size and stirring speed reaction is examined. The...Mixture of phosphoric and sulfuric acid solutions has been used to investigate the dissolution of natural phosphates (PN) by DRC. The effect of concentration, particle size and stirring speed reaction is examined. Thermochimique properties of each kinetic parameters reaction are determined. It was found that these parameters have a considerable effect on the thermochemical aspect of the attack reaction. It is known that the process of PN sulphophosphoric acid attack leads to the formation of dihydrate (CaSO4.2H2O: DH). The present work shows the precipitation of other residues their formula depends on factors studied. The increase in concentration leads to the formation of hemihydrate (CaSO4v1/2H2O:HH) beside DH for the low values of% H2SO4 due to the solubility of dihydrate on the etching solution and the precipitation of (Ca (H2PO4)2.2H2O) next of DH for low agitation values because of the lack of turbulence between the liquid phase and the solid phase which favors the precipitation of this latter compound.展开更多
The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc...The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc oxide ore 6:1,roasting temperature 450°C,holding time 150 min.The molar ratio of NaOH to zinc oxide ore was the most predominant factor affecting the extraction ratios of zinc oxide and silica.The mineral phase transformations were investigated by testing the phases of specimens obtained at different temperatures.The process was that silica reacted with molten NaOH to form Na_2SiO_3 at first,then transformed into Na_4SiO_4 with temperature rising.ZnCO_3 and its decomposing product ZnO reacted with NaOH to form Na_2ZnO_2.Na_2ZnSiO_4was also obtained.The reaction rate was investigated using unreacted shrinking core model.Two models used were chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the reaction rate was combine-controlled by two models.The activation energy and frequency factor were obtained as 24.12 k J/mol and 0.0682,respectively.展开更多
The effect of F,K,and Na on the solid phase reaction of the Baiyunebo iron ore was investigated by differential thermal analysis (DTA) and X-ray diffraction(XRD).It has been identified that alkaline elements K and...The effect of F,K,and Na on the solid phase reaction of the Baiyunebo iron ore was investigated by differential thermal analysis (DTA) and X-ray diffraction(XRD).It has been identified that alkaline elements K and Na in the Baiyunebo ore instigate the formation of low melting point compounds Na2SiO3 and Na2O·Fe2O3 and the generation of molten state in the solid phase sintering.Element F in the Baiyunebo ore facilitates the formation of cuspidine compound 3CaO·2SiO2·CaF2 in the solid phase reaction.The cuspidine compound is kept in solid as one of the final products through the entire sintering process due to its high melting point.In the sintering process,CaF2and SiO2 react with CaO first and form 3CaO·2SiO2·CaF2 and 3CaO·2SiO2,so the formation of ferrites,Na2O·Fe2O3,and 2CaO·Fe2O3 is inhibited.展开更多
An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting ...An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting temperature of 440°C, and a thermostatic time of 60 min. The molar ratio of(NH_4)_2SO_4/zinc is the most predominant factor and the roasting temperature is the second significant factor that governs the zinc extraction. Thermogravimetric-differential thermal analysis was used for(NH_4)_2SO_4 and zinc mixed in a molar ratio of 1.4:1 at the heating rates of 5, 10, 15, and 20 K·min-1. Two strong endothermic peaks indicate that the complex chemical reactions occur at approximately 290°C and 400°C. XRD analysis was employed to examine the transformations of mineral phases during roasting process. Kinetic parameters, including reaction apparent activation energy, reaction order, and frequency factor, were calculated by the Doyle-Ozawa and Kissinger methods. Corresponding to the two endothermic peaks, the kinetic equations were obtained.展开更多
Complexity phenomena like dynamic and static patterns, order from disorder, chaos and catastrophe were simulated by the application of 2-D reaction-diffusion CNN of two state variables and two diffusion coefficients t...Complexity phenomena like dynamic and static patterns, order from disorder, chaos and catastrophe were simulated by the application of 2-D reaction-diffusion CNN of two state variables and two diffusion coefficients transformed from Zhabotinksii model. They revealed somehow the mechanism of hydrothermal ore-forming processes, and answered several questions about the onset of ore forming.展开更多
Potassium and phosphate were extracted at low temperature by acid hydrolysis process to decompose a new type of associated phosphorus and potassium ore. The main factors affecting the dissolution rate were investigate...Potassium and phosphate were extracted at low temperature by acid hydrolysis process to decompose a new type of associated phosphorus and potassium ore. The main factors affecting the dissolution rate were investigated, such as grinding fineness, the amount of sulfuric acid and fluoride salt, reaction time and temperature, etc. Meanwhile, the effects of various factors on the formation of soluble potassium and phosphate were also discussed. The reaction products and residues were determined by X-ray diffraction(XRD), scanning electron microscopic(SEM) analysis and other means. The results showed that the dissolution rates of potassium and phosphorus were 70wt% and 93.7wt%, respectively, under the conditions of a grain size of 95.64wt% lessthan 0.074 mm, 9.78 g·g^(-1) sulfuric acid, 0.5 g·g^(-1) ammonium fluoride, 160 ℃ and a reaction time of 2h. The thermodynamic and chemical reaction mechanism was revealed that the primary reaction could be completed spontaneously in a temperature range of 298-433 K. The increase of reaction temperature had an important influence on ion exchange reaction, which was more conducive to the spontaneous process. The research will open up a new way for efficient use of potassium ore resources.展开更多
In the present study, a response surface methodology was used to optimize the electroleaching of Mn from low-grade pyrolusite. Ferrous sulfate heptahydrate was used in this reaction as a reducing agent in sulfuric aci...In the present study, a response surface methodology was used to optimize the electroleaching of Mn from low-grade pyrolusite. Ferrous sulfate heptahydrate was used in this reaction as a reducing agent in sulfuric acid solutions. The effect of six process variables, including the mass ratio of ferrous sulfate heptahydrate to pyrolusite, mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio, current density, leaching temperature, and leaching time, as well as their binary interactions, were modeled. The results revealed that the order of these factors with respect to their effects on the leaching efficiency were mass ratio of ferrous sulfate heptahydrate to pyrolusite 〉 leaching time 〉 mass ratio of sulfuric acid to pyrolusite 〉 liquid-to-solid ratio 〉 leaching temperature 〉 current density. The optimum conditions were as follows: 1.10:1 mass ratio of ferrous sulfate heptahydrate to pyrolusite, 0.9:1 mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio of 0.7:1, current density of 947 A/m^2, leaching time of 180 min, and leaching temperature of 73°C. Under these conditions, the predicted leaching efficiency for Mn was 94.1%; the obtained experimental result was 95.7%, which confirmed the validity of the model.展开更多
A calorimetric, Differential Reaction Calorimetry (DRC), study of the thermochemical of the attack of a phosphate ore from Gafsa region (Tunisia) by a mixture of sulfuric and phosphoric acid is undertaken at different...A calorimetric, Differential Reaction Calorimetry (DRC), study of the thermochemical of the attack of a phosphate ore from Gafsa region (Tunisia) by a mixture of sulfuric and phosphoric acid is undertaken at different solid-liquid ratio and different temperature. The plot of the quantity of heat measured by integrating the raw signal as a function of the dissolved mass in the same volume solution at 25℃ presents three straight segments attributed at the formation of the hemihydrate (CaSO4·1/2H2O:HH), the dihydrate (CaSO4·2H2O:DH) or a mixture of these two products checked by X-ray diffraction, infrared spectroscopy and thermal analysis (Differential Scanning Calorimeter: DSC). The attack by the acid mixture was performed at higher temperature and showed in addition the formation of another form of calcium sulfate:anhydrous (CaSO4:AH). Moreover, the variation of mass enthalpy versus temperature presents a break at the T = 45℃. According to our results, it seems that the effect of the temperature on the sulfo-phosphoric attack reaction on the natural phosphate (NP) generates a change of mechanism at around 45℃.展开更多
Taking the gold ore deposit concentrating area of Jiaodong area in Shandong, China for an example, based on geological analysis, and applying Gresens’ equation, Grant’s isocon diagram and O’hara microelement ca...Taking the gold ore deposit concentrating area of Jiaodong area in Shandong, China for an example, based on geological analysis, and applying Gresens’ equation, Grant’s isocon diagram and O’hara microelement calculation method, a thorough study on shear alteration, mass transfer and gold mineralization was carried out. The authors also made mathematic simulation and geochemical analysis. The work reveals temporal spatial changing regularities of temperature field and velocity field of fluids, and also reveals fluid transport chemical reaction coupling metallogenic dynamics of the Jiaojia gold ore concentrating area. During shear alteration process of the Jiaodong gold ore concentrating area, all kinds of components transferred with different amounts, fluid rock ratio was rather high and volume strain was of dilation type. Fast flow of ore forming fluid favors the occurrence of mixed fluid. Shear fractured zones are places where there was strong transportation reaction coupling mineralization. Ore bodies were located in dilation space of shear structure where there was the greatest fluid flux. After the emplacement of the rock body, a convex heat field was formed around the rock body. It is one of the main metallogenic forces. The major reason for mineralization is the mobilization, migration and enrichment of ore forming elements induced by shear compressive extensional tectonism. Inclusion gold dominant low grade ores were formed in the early ore forming stage, while high grade ores, which contained fissure gold and polymetallic veinlets, were formed in late ore forming stage.展开更多
The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and ...The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.展开更多
The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxide...The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxides in the sandstone and ignimbrite are changed into sulfides. The disproportionation reaction of sulfur in a solution is confirmed as 4S+3H2O=2S^2-+S2O3^2--+6H^+. The dynamics process is studied and the first-order reaction rate equation -1n(1-a)=ktt is obtained. The effects of the reactive products, stirring speed, dosage of sulfuration agent, value of pH and sulphidizing temperature on the sulfuration of oxide ore are investigated. The results indicate that the reactive apparent activation energy is 100.8 kJ/mol and the sulfuration ratio of lead-zinc oxide ore reaches 60% under the conditions of pH 5.9-7.5, the sulfuration temperature of 130 ℃, sulfuration time of 180 min and the stirring speed of 800 r/min.展开更多
文摘Mixture of phosphoric and sulfuric acid solutions has been used to investigate the dissolution of natural phosphates (PN) by DRC. The effect of concentration, particle size and stirring speed reaction is examined. Thermochimique properties of each kinetic parameters reaction are determined. It was found that these parameters have a considerable effect on the thermochemical aspect of the attack reaction. It is known that the process of PN sulphophosphoric acid attack leads to the formation of dihydrate (CaSO4.2H2O: DH). The present work shows the precipitation of other residues their formula depends on factors studied. The increase in concentration leads to the formation of hemihydrate (CaSO4v1/2H2O:HH) beside DH for the low values of% H2SO4 due to the solubility of dihydrate on the etching solution and the precipitation of (Ca (H2PO4)2.2H2O) next of DH for low agitation values because of the lack of turbulence between the liquid phase and the solid phase which favors the precipitation of this latter compound.
基金Projects(51774070,51204054)supported by the National Natural Science Foundation of ChinaProject(N150204009)supported by the Ministry of Education Basic Scientific Research Business Expenses,ChinaProject(2007CB613603)supported by the National Basic Research Program of China
文摘The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc oxide ore 6:1,roasting temperature 450°C,holding time 150 min.The molar ratio of NaOH to zinc oxide ore was the most predominant factor affecting the extraction ratios of zinc oxide and silica.The mineral phase transformations were investigated by testing the phases of specimens obtained at different temperatures.The process was that silica reacted with molten NaOH to form Na_2SiO_3 at first,then transformed into Na_4SiO_4 with temperature rising.ZnCO_3 and its decomposing product ZnO reacted with NaOH to form Na_2ZnO_2.Na_2ZnSiO_4was also obtained.The reaction rate was investigated using unreacted shrinking core model.Two models used were chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the reaction rate was combine-controlled by two models.The activation energy and frequency factor were obtained as 24.12 k J/mol and 0.0682,respectively.
基金supported by the National Natural Science Foundation of China(No.50664006)
文摘The effect of F,K,and Na on the solid phase reaction of the Baiyunebo iron ore was investigated by differential thermal analysis (DTA) and X-ray diffraction(XRD).It has been identified that alkaline elements K and Na in the Baiyunebo ore instigate the formation of low melting point compounds Na2SiO3 and Na2O·Fe2O3 and the generation of molten state in the solid phase sintering.Element F in the Baiyunebo ore facilitates the formation of cuspidine compound 3CaO·2SiO2·CaF2 in the solid phase reaction.The cuspidine compound is kept in solid as one of the final products through the entire sintering process due to its high melting point.In the sintering process,CaF2and SiO2 react with CaO first and form 3CaO·2SiO2·CaF2 and 3CaO·2SiO2,so the formation of ferrites,Na2O·Fe2O3,and 2CaO·Fe2O3 is inhibited.
基金financially supported by the National Natural Science Foundation of China(Nos.51204054 and 51574084)the Fundamental Research Funds for the Central Universities of China(No.N150204009)the National Basic Research Priorities Program of China(No.2014CB643405)
文摘An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting temperature of 440°C, and a thermostatic time of 60 min. The molar ratio of(NH_4)_2SO_4/zinc is the most predominant factor and the roasting temperature is the second significant factor that governs the zinc extraction. Thermogravimetric-differential thermal analysis was used for(NH_4)_2SO_4 and zinc mixed in a molar ratio of 1.4:1 at the heating rates of 5, 10, 15, and 20 K·min-1. Two strong endothermic peaks indicate that the complex chemical reactions occur at approximately 290°C and 400°C. XRD analysis was employed to examine the transformations of mineral phases during roasting process. Kinetic parameters, including reaction apparent activation energy, reaction order, and frequency factor, were calculated by the Doyle-Ozawa and Kissinger methods. Corresponding to the two endothermic peaks, the kinetic equations were obtained.
文摘Complexity phenomena like dynamic and static patterns, order from disorder, chaos and catastrophe were simulated by the application of 2-D reaction-diffusion CNN of two state variables and two diffusion coefficients transformed from Zhabotinksii model. They revealed somehow the mechanism of hydrothermal ore-forming processes, and answered several questions about the onset of ore forming.
基金Funded by the National Natural Science Fundation of China(51274158)the National Twelfth Five-Year Plan for Scientific and Technological Support(2013BAE04B03)the Scientific and Technological Support Project of Hubei Province(2015BCA251)
文摘Potassium and phosphate were extracted at low temperature by acid hydrolysis process to decompose a new type of associated phosphorus and potassium ore. The main factors affecting the dissolution rate were investigated, such as grinding fineness, the amount of sulfuric acid and fluoride salt, reaction time and temperature, etc. Meanwhile, the effects of various factors on the formation of soluble potassium and phosphate were also discussed. The reaction products and residues were determined by X-ray diffraction(XRD), scanning electron microscopic(SEM) analysis and other means. The results showed that the dissolution rates of potassium and phosphorus were 70wt% and 93.7wt%, respectively, under the conditions of a grain size of 95.64wt% lessthan 0.074 mm, 9.78 g·g^(-1) sulfuric acid, 0.5 g·g^(-1) ammonium fluoride, 160 ℃ and a reaction time of 2h. The thermodynamic and chemical reaction mechanism was revealed that the primary reaction could be completed spontaneously in a temperature range of 298-433 K. The increase of reaction temperature had an important influence on ion exchange reaction, which was more conducive to the spontaneous process. The research will open up a new way for efficient use of potassium ore resources.
基金financially supported by the "121" Scientific and Technological Supporting Demonstration Project of Chongqing, China (No. cstc2014zktjccx B0043)the Scientific Research and Technology Development Program of Guangxi, China (No. 2014BA10016)
文摘In the present study, a response surface methodology was used to optimize the electroleaching of Mn from low-grade pyrolusite. Ferrous sulfate heptahydrate was used in this reaction as a reducing agent in sulfuric acid solutions. The effect of six process variables, including the mass ratio of ferrous sulfate heptahydrate to pyrolusite, mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio, current density, leaching temperature, and leaching time, as well as their binary interactions, were modeled. The results revealed that the order of these factors with respect to their effects on the leaching efficiency were mass ratio of ferrous sulfate heptahydrate to pyrolusite 〉 leaching time 〉 mass ratio of sulfuric acid to pyrolusite 〉 liquid-to-solid ratio 〉 leaching temperature 〉 current density. The optimum conditions were as follows: 1.10:1 mass ratio of ferrous sulfate heptahydrate to pyrolusite, 0.9:1 mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio of 0.7:1, current density of 947 A/m^2, leaching time of 180 min, and leaching temperature of 73°C. Under these conditions, the predicted leaching efficiency for Mn was 94.1%; the obtained experimental result was 95.7%, which confirmed the validity of the model.
文摘A calorimetric, Differential Reaction Calorimetry (DRC), study of the thermochemical of the attack of a phosphate ore from Gafsa region (Tunisia) by a mixture of sulfuric and phosphoric acid is undertaken at different solid-liquid ratio and different temperature. The plot of the quantity of heat measured by integrating the raw signal as a function of the dissolved mass in the same volume solution at 25℃ presents three straight segments attributed at the formation of the hemihydrate (CaSO4·1/2H2O:HH), the dihydrate (CaSO4·2H2O:DH) or a mixture of these two products checked by X-ray diffraction, infrared spectroscopy and thermal analysis (Differential Scanning Calorimeter: DSC). The attack by the acid mixture was performed at higher temperature and showed in addition the formation of another form of calcium sulfate:anhydrous (CaSO4:AH). Moreover, the variation of mass enthalpy versus temperature presents a break at the T = 45℃. According to our results, it seems that the effect of the temperature on the sulfo-phosphoric attack reaction on the natural phosphate (NP) generates a change of mechanism at around 45℃.
基金The study is supported by the National Climbing Program of China( No.95 -pre-2 5 and 95 -pre-3 9) "10 0 Beyond Century Scie
文摘Taking the gold ore deposit concentrating area of Jiaodong area in Shandong, China for an example, based on geological analysis, and applying Gresens’ equation, Grant’s isocon diagram and O’hara microelement calculation method, a thorough study on shear alteration, mass transfer and gold mineralization was carried out. The authors also made mathematic simulation and geochemical analysis. The work reveals temporal spatial changing regularities of temperature field and velocity field of fluids, and also reveals fluid transport chemical reaction coupling metallogenic dynamics of the Jiaojia gold ore concentrating area. During shear alteration process of the Jiaodong gold ore concentrating area, all kinds of components transferred with different amounts, fluid rock ratio was rather high and volume strain was of dilation type. Fast flow of ore forming fluid favors the occurrence of mixed fluid. Shear fractured zones are places where there was strong transportation reaction coupling mineralization. Ore bodies were located in dilation space of shear structure where there was the greatest fluid flux. After the emplacement of the rock body, a convex heat field was formed around the rock body. It is one of the main metallogenic forces. The major reason for mineralization is the mobilization, migration and enrichment of ore forming elements induced by shear compressive extensional tectonism. Inclusion gold dominant low grade ores were formed in the early ore forming stage, while high grade ores, which contained fissure gold and polymetallic veinlets, were formed in late ore forming stage.
基金MGMR Eighth Five- Year Plan Basic Geology Research Foundation Grant 8502216China National Natural Science Foundation Grant 49173169
文摘The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.
基金supported by Cooperated Project of Academy and College Yunnan province(2003CBALA02P023)
文摘The thermal dissolved sulfuration technology is brought forward and performed based on the characteristic of low grade lead-zinc oxide ore in lanpin. Using sulfur as the sulphidizing agent in the experiment, the oxides in the sandstone and ignimbrite are changed into sulfides. The disproportionation reaction of sulfur in a solution is confirmed as 4S+3H2O=2S^2-+S2O3^2--+6H^+. The dynamics process is studied and the first-order reaction rate equation -1n(1-a)=ktt is obtained. The effects of the reactive products, stirring speed, dosage of sulfuration agent, value of pH and sulphidizing temperature on the sulfuration of oxide ore are investigated. The results indicate that the reactive apparent activation energy is 100.8 kJ/mol and the sulfuration ratio of lead-zinc oxide ore reaches 60% under the conditions of pH 5.9-7.5, the sulfuration temperature of 130 ℃, sulfuration time of 180 min and the stirring speed of 800 r/min.