The full-length sequence of the odorant binding protein 5 gene,HarmOBP5,was obtained from an antennae cDNA library of cotton bollworm,Helicoverpa armigera (Hübner).The cDNA contains a 444 bp open reading frame,...The full-length sequence of the odorant binding protein 5 gene,HarmOBP5,was obtained from an antennae cDNA library of cotton bollworm,Helicoverpa armigera (Hübner).The cDNA contains a 444 bp open reading frame,encoding a protein with 147 amino acids,namely HarmOBP5.HarmOBP5 was expressed in Escherichia coli and the recombinant protein was purified by affinity chromatography.SDS-PAGE and Western blot analysis demonstrated that the purified protein can be used for further investigation of its binding characteristics.Competitive binding assays with 113 odorant chemicals indicated that HarmOBP5 has strong affinity to some special plant volatiles,including (E)-β-farnesene,ethyl butyrate,ethyl heptanoate,and acetic acid 2-methylbutyl ester.Based on three-dimensional (3D) model of AaegOBP1 from Aedes aegypti,a 3D model of HarmOBP5 was predicted.The model revealed that some key binding residues in HarmOBP5 may play important roles in odorant perception of H.armigera.This study provides clues for better understanding physiological functions of OBPs in H.armigera and other insects.展开更多
Strategies for insect population control are currently targeting chemical communication at the molecular level. The diamondback moth Plutella xylostella represents one of the most serious pests in agriculture, however...Strategies for insect population control are currently targeting chemical communication at the molecular level. The diamondback moth Plutella xylostella represents one of the most serious pests in agriculture, however detailed information on the proteins mediating olfaction in this species is still poor. This species is endowed with a repertoire of a large number of olfactory receptors and odorant binding proteins(OBPs). As a contribution to map the specificities of these chemical sensors in the moth and eventually unrave l the complexity of chemodetection, we have measured the affinities of three selected OBPs to a series of potential odorants. Three proteins are highly divergent in their amino acid sequences and show markedly different expression profiles. In fact, PxylOBP3 is exclusively expressed in the antennae of both sexes, PxylOBP9 is male specific and present only in antennae and reproductive organs, while PxylOBP19, an unusual OBP with nine cysteines, is ubiquitously present in all the organs examined. Such expression pattern suggests that the last two proteins may be involved in non-chemosensory functions. Despite such differences, the three OBPs exhibit similar binding spectra, together with high selectivity. Among the 26 natural compounds tested, only two proved to be good ligands, retinol and coniferyl aldehyde. This second compound is particularly interesting being part of the chemical pathway leading to regeneration of lignin, one of the defense strategies of the plant against insect attack, and might find applications as a repellent for P. xylostella and other pests.展开更多
基金supported by the National Basic Research Program of China(2012CB114104)the National Natural Science Foundation of China(30871640,31071694)+1 种基金the National High-Tech R&D Program of China(2008AA02Z307)the International Cooperation and Exchange Foundation of NSFC-RS of China(31111130203).
文摘The full-length sequence of the odorant binding protein 5 gene,HarmOBP5,was obtained from an antennae cDNA library of cotton bollworm,Helicoverpa armigera (Hübner).The cDNA contains a 444 bp open reading frame,encoding a protein with 147 amino acids,namely HarmOBP5.HarmOBP5 was expressed in Escherichia coli and the recombinant protein was purified by affinity chromatography.SDS-PAGE and Western blot analysis demonstrated that the purified protein can be used for further investigation of its binding characteristics.Competitive binding assays with 113 odorant chemicals indicated that HarmOBP5 has strong affinity to some special plant volatiles,including (E)-β-farnesene,ethyl butyrate,ethyl heptanoate,and acetic acid 2-methylbutyl ester.Based on three-dimensional (3D) model of AaegOBP1 from Aedes aegypti,a 3D model of HarmOBP5 was predicted.The model revealed that some key binding residues in HarmOBP5 may play important roles in odorant perception of H.armigera.This study provides clues for better understanding physiological functions of OBPs in H.armigera and other insects.
基金supported by the National Natural Science Foundation of China (31230062 and 31321004)the Beijing Natural Science Foundation of China (6132028)the State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences (SKLOF201502)
文摘Strategies for insect population control are currently targeting chemical communication at the molecular level. The diamondback moth Plutella xylostella represents one of the most serious pests in agriculture, however detailed information on the proteins mediating olfaction in this species is still poor. This species is endowed with a repertoire of a large number of olfactory receptors and odorant binding proteins(OBPs). As a contribution to map the specificities of these chemical sensors in the moth and eventually unrave l the complexity of chemodetection, we have measured the affinities of three selected OBPs to a series of potential odorants. Three proteins are highly divergent in their amino acid sequences and show markedly different expression profiles. In fact, PxylOBP3 is exclusively expressed in the antennae of both sexes, PxylOBP9 is male specific and present only in antennae and reproductive organs, while PxylOBP19, an unusual OBP with nine cysteines, is ubiquitously present in all the organs examined. Such expression pattern suggests that the last two proteins may be involved in non-chemosensory functions. Despite such differences, the three OBPs exhibit similar binding spectra, together with high selectivity. Among the 26 natural compounds tested, only two proved to be good ligands, retinol and coniferyl aldehyde. This second compound is particularly interesting being part of the chemical pathway leading to regeneration of lignin, one of the defense strategies of the plant against insect attack, and might find applications as a repellent for P. xylostella and other pests.