The full-length sequence of the odorant binding protein 5 gene,HarmOBP5,was obtained from an antennae cDNA library of cotton bollworm,Helicoverpa armigera (Hübner).The cDNA contains a 444 bp open reading frame,...The full-length sequence of the odorant binding protein 5 gene,HarmOBP5,was obtained from an antennae cDNA library of cotton bollworm,Helicoverpa armigera (Hübner).The cDNA contains a 444 bp open reading frame,encoding a protein with 147 amino acids,namely HarmOBP5.HarmOBP5 was expressed in Escherichia coli and the recombinant protein was purified by affinity chromatography.SDS-PAGE and Western blot analysis demonstrated that the purified protein can be used for further investigation of its binding characteristics.Competitive binding assays with 113 odorant chemicals indicated that HarmOBP5 has strong affinity to some special plant volatiles,including (E)-β-farnesene,ethyl butyrate,ethyl heptanoate,and acetic acid 2-methylbutyl ester.Based on three-dimensional (3D) model of AaegOBP1 from Aedes aegypti,a 3D model of HarmOBP5 was predicted.The model revealed that some key binding residues in HarmOBP5 may play important roles in odorant perception of H.armigera.This study provides clues for better understanding physiological functions of OBPs in H.armigera and other insects.展开更多
Strategies for insect population control are currently targeting chemical communication at the molecular level. The diamondback moth Plutella xylostella represents one of the most serious pests in agriculture, however...Strategies for insect population control are currently targeting chemical communication at the molecular level. The diamondback moth Plutella xylostella represents one of the most serious pests in agriculture, however detailed information on the proteins mediating olfaction in this species is still poor. This species is endowed with a repertoire of a large number of olfactory receptors and odorant binding proteins(OBPs). As a contribution to map the specificities of these chemical sensors in the moth and eventually unrave l the complexity of chemodetection, we have measured the affinities of three selected OBPs to a series of potential odorants. Three proteins are highly divergent in their amino acid sequences and show markedly different expression profiles. In fact, PxylOBP3 is exclusively expressed in the antennae of both sexes, PxylOBP9 is male specific and present only in antennae and reproductive organs, while PxylOBP19, an unusual OBP with nine cysteines, is ubiquitously present in all the organs examined. Such expression pattern suggests that the last two proteins may be involved in non-chemosensory functions. Despite such differences, the three OBPs exhibit similar binding spectra, together with high selectivity. Among the 26 natural compounds tested, only two proved to be good ligands, retinol and coniferyl aldehyde. This second compound is particularly interesting being part of the chemical pathway leading to regeneration of lignin, one of the defense strategies of the plant against insect attack, and might find applications as a repellent for P. xylostella and other pests.展开更多
Odorant binding proteins (OBPs) in insects are postulated to solubilize and transport the hydrophobic odorants across the hydrophilic antennal lymph to the olfactory receptors (ORs) located on the dendrite membran...Odorant binding proteins (OBPs) in insects are postulated to solubilize and transport the hydrophobic odorants across the hydrophilic antennal lymph to the olfactory receptors (ORs) located on the dendrite membrane of the sensory neurons. OBPs in adult insects have been intensively reported, but those in larvae are rarely addressed. In our study, a full-length OBP cDNA, namely SexiOBP13, was cloned by RT-PCR and RACE strategy from the heads of Spodoptera exigua larvae. The quantitative real-time PCR (qPCR) measurement indicated that SexiOBP13 was highly expressed in larval head, but very low in other parts of larva and was not detected in any tissues of adult. The binding affinities of SexiOBP13 to plant volatiles and female sex pheromone components were measured by competitive binding assays. Interestingly, SexiOBP13 displayed a high binding affinity (Ki=3.82 IJmol L-1) to Z9,E12-14:Ac, the major sex pheromone component of S. exigua, while low affinities to the tested host plant volatiles (Ki〉27 μmol L-l). The behavioral tests further confirmed that Z9,E12-14:Ac was indeed active to elicit the behavioral activity of the third instar larvae of S. exigua. Taken together, our results suggest that SexiOBP13 may play a role in reception of female sex pheromone in S. exigua larvae. The ecological significance of the larvae preference to the adult female sex pheromone was discussed.展开更多
Olfaction plays a major role in host-seeking behaviour of mosquitoes. An informat- ics-based genome-wide analysis of odorant-binding protein (OBP) homologues is under- taken, and 32 putative OBP genes in total in the ...Olfaction plays a major role in host-seeking behaviour of mosquitoes. An informat- ics-based genome-wide analysis of odorant-binding protein (OBP) homologues is under- taken, and 32 putative OBP genes in total in the whole genome sequences of Anopheles gam- biae are identified. Tissue-specific expression patterns of all A. gambiae OBP candidates are determined by semi-quantitative Reverse Transcription (RT)-PCR using mosquito actin gene a internal expression control standard. The results showed that 20 OBP candidates had strong expression in mosquito olfactory tissues (female antennae), which indicate that OBPs may play an important role in regulating mosquito olfactory behaviours. Species-specific expression pat- terns of all putative anopheline OBPs are also studied in two of the most important malaria vec- tors in A. gambiae complex, i.e. A. gambiae and A. arabiensis, which found 12 of the putative OBP genes examined displayed species-differential expression patterns. The cumulative relative expression intensity of the OBPs in A. arabiensis antennae was higher than that in A. gambiae (the ratio is 1441.45:1314.12), which might be due to their different host preference behaviour. While A. gambiae is a highly anthropophilic mosquito, A. arabiensis is more opportunistic (Vary- ing from anthropophilic to zoophilic). So the latter should need more OBPs to support its host selection preference. Identification of mosquito OBPs and verification of their tissue- and spe- cies-specific expression patterns represent the first step towards further molecular analysis of mosquito olfactory mechanism, such as recombinant expression and ligand identification.展开更多
The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8?341 e...The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8?341 expressed sequence tags was generated from Roche 454 GS-FLX sequencing of eight tissue-specific cDNA libraries. Putative chemosensory proteins (12) and odorant binding proteins (OBPs) (18) were annotated, which included three putative general OBP (GOBP), one more than typically reported for other Lepidoptera. To further characterize CpomGOBPs, we cloned cDNA copies of their transcripts and determined their expression patterns in various tissues. Cloning and sequencing of the 698?nt transcript for CpomGOBP1 resulted in the prediction of a 163 amino acid coding region, and subsequent RT-PCR indicated that the transcripts were mainly expressed in antennae and mouthparts. The 1?289 nt (160 amino acid) CpomGOBP2 and the novel 702 nt (169 amino acid) CpomGOBP3 transcripts are mainly expressed in antennae, mouthparts, and female abdomen tips. These results indicate that next generation sequencing is useful for the identification of novel transcripts of interest, and that codling moth expresses a transcript encoding for a new member of the GOBP subfamily.展开更多
A cDNA encoding the general odorant binding protein Ⅱ(GOBP Ⅱ) was isolated from the antennae of Spodoptera litura(SlGOBP Ⅱ,GenBank Accession No.EU086371) by homologous cloning and rapid amplification of cDNA ends(R...A cDNA encoding the general odorant binding protein Ⅱ(GOBP Ⅱ) was isolated from the antennae of Spodoptera litura(SlGOBP Ⅱ,GenBank Accession No.EU086371) by homologous cloning and rapid amplification of cDNA ends(RACE).Sequencing and structural analyses revealed that the open reading frame(ORF) of SlGOBP Ⅱ was 489 bp,encoding 162 amino acids with a predicted MW of 18.2 kD and pI of 5.72.SlGOPB Ⅱ shared typical structural features of odorant binding proteins with other insects,including the six conservative cysteine residues.The deduced amino acid sequence of SlGOPB Ⅱ shared significant identity with the GOBP Ⅱ from S.frugiperda and S.exigua.RT-PCR and Northern blot analyses showed that SlGOBP Ⅱ was specifically expressed in the antennae.cDNA encoding SlGOBP Ⅱ was constructed into the pET-32a vector and the recombinant protein was highly expressed in Escherichia coli BL21(DE3) after induction with IPTG.SDS electrophoresis and Western blot analysis confirmed the molecular weight of the recombinant SIGOBPⅡ i.e,32 kD,which has a 6×His tag at the N-terminus.The recombinant SlGOBP Ⅱ was purified by single-step Ni-NTA affinity chromatography and used to raise antiserum in rabbits.ELISA showed that the titer of antiserum was 1:12800,while Western blot analysis showed that the recombinant SlGOBP Ⅱ was recognized as anti-SlGOBP Ⅱ antiserum.展开更多
Odorant-binding proteins (OBPs) are soluble proteins mediating chemorecep- tion in insects. In previous research, we investigated the molecular mechanisms adopted by aphids to detect the alarm pheromone (E)-fl-far...Odorant-binding proteins (OBPs) are soluble proteins mediating chemorecep- tion in insects. In previous research, we investigated the molecular mechanisms adopted by aphids to detect the alarm pheromone (E)-fl-farnesene and we found that the recogni- tion of this and structurally related molecules is mediated by OBP3 and OBP7. Here, we show the differential expression patterns of 5 selected OBPs (OBP 1, OBP3, OBP6, OBPT, OBPS) obtained performing quantitative RT-PCR and immunolocalization experiments in different body parts of adults and in the 5 developmental instars, including winged and unwinged morphs, of the pea aphid Acyrthosiphon pisum. The results provide an overall picture that allows us to speculate on the relationship between the differential expression of OBPs and their putative function. The expression of OBP3, OBP6, and OBP7 in the antennal sensilla suggests a ehemosensory fimction for these proteins, whereas the con- stant expression level of OBP8 in all instars could suggest a conserved role. Moreover, OBP1 and OBP3 are also expressed in nonsensory organs. A light and scanning electron microscopy study of sensilla on different body parts of aphid, in particular antennae, legs, mouthparts, and coruicles-cauda, completes this research providing a guide to facilitate the mapping of OBP expression profiles.展开更多
Credible evidence shows that odorant binding proteins(OBPs)are required for insect olfaction perception and play a key role in transporting hydrophobic odorants across the sensillum lymph to the olfactory receptors(OR...Credible evidence shows that odorant binding proteins(OBPs)are required for insect olfaction perception and play a key role in transporting hydrophobic odorants across the sensillum lymph to the olfactory receptors(ORs).In the present study,a novel OBP(AlinOBP3)gene from the lucerne plant bug,Adelphocoris lineolatus,was cloned and expressed.The expression pattern of AlinOBP3 was evaluated by qPCR,which indicated that AlinOBP3 was dominantly expressed in antennae.The binding properties of AlinOBP3 with 9 cotton volatiles and 5 sex pheromone analogs were measured by fluorescence competitive binding assays with the fluorescence probe 1-NPN.The results revealed that of 9 cotton volatiles,Myrcene,β-Ocimene and α-Phellandrene can bind with AlinOBP3.α-Phellandrene especially bound to AlinOBP3 with a high binding affinity,with a dissociation constant of 56.68 μmol/L.Of the 5 sex pheromone analogs,Hexyl butyrate had the strongest binding affinity with AlinOBP3,with a dissociation constant as 59.53 μmol/L.Butyl butyrate,trans-2-Hexenyl butyrate and Ethyl butyrate had medium binding affinities with AlinOBP3,with dissociation constants of 227.39,108.77 and 143.47 μmol/L,respectively.The results suggest that AlinOBP3 might be a pheromone binding protein(PBP)with a dual-function for the perception of sex pheromones and plant volatiles.展开更多
Proteomic analyses were done on 2 chemosensory appendages of the lone star tick, Amblyomma americanum. Proteins in the fore tarsi, which contain the olfactory Haller's organ, and in the palps, that include gustatory ...Proteomic analyses were done on 2 chemosensory appendages of the lone star tick, Amblyomma americanum. Proteins in the fore tarsi, which contain the olfactory Haller's organ, and in the palps, that include gustatory sensilla, were compared with proteins in the third tarsi. Also, male and female ticks were compared. Proteins were identified by sequence similarity to known proteins, and by 3-dimensional homology modeling. Proteomic data were also compared with organ-specific transcriptomes from the tick Rhipicephalus microplus. The fore tarsi express a lipocalin not found in the third tarsi or palps. The fore tarsi and palps abundantly express 2 proteins, which are similar to insect odorant-binding proteins (OBPs). Compared with insect OBPs, the tick OBP-like sequences lacked the cysteine absent in C-minus OBPs, and 1 tick OBP-like sequence had additional cysteines that were similar to C-plus OBPs. Four proteins similar to the antibiotic protein microplusin were found: 2 exclusively expressed in the fore tarsi and 1 exclusively expressed in the palps. These proteins lack the microplusin copper-binding site, but they are modeled to have a significant internal cavity, potentially a ligand-binding site. Proteins similar to the dust mite allergens Der p7 and Der f 7 were found differentially expressed in female fore tarsi. A protein exclusively expressed in the fore tarsi has similarities to Neto, which is known to be involved in clustering ofionotropic glutamate receptors. These results constitute the first report of OBP-like protein sequences in ticks and point to several research avenues on tick chemosensory reception.展开更多
Pine caterpillar moths, Dendrolimus spp. (Lepidoptera: Lasiocampidae), are serious economic pest of pines. Previously, phylogenetic analyses of Dendrolimus using different methods yielded inconsistent results. The ...Pine caterpillar moths, Dendrolimus spp. (Lepidoptera: Lasiocampidae), are serious economic pest of pines. Previously, phylogenetic analyses of Dendrolimus using different methods yielded inconsistent results. The chemosensory systems of insects may play fundamental roles in promoting speciation. Odorant-binding proteins (OBPs) participate in the first step of odor detection. Studying the evolution of OBPs in closely related species may help us to identify their role in speciation. We identified three OBPs - one pheromone-binding protein and two general odorant-binding proteins - from male antennae of four Dendrolimus species, D. superans (Butler), D. punctatus (Walker), D. kikuchii Matsumura, and D. houi Lajonquiere, the olfactory recognition systems of which had not been previously investigated. We analyzed their molecular characteristics and compared their sequences to those of OBPs in D. tabulaeformis Tsai et Liu. Ka/Ks ratio analyses among the five Dendrolimus species indicate that PBP1 genes experienced more evolutionary pressure than the GOBPs. Phylogenetic relationships of PBP1 and GOBP1 both indicated that D. houi was the basal species, then branched D. kikuchii, while D. tabulaeformis, D. punctatus, and D. superans evolved more recently. These relationships are consistent with the changes in sex pheromone components of these five species. Dendrolimus tabulaeformis and D. punctatus are closely related sister species. However, the distances among GOBP2 sequences in the five Dendrolimus were very short, and the relationships of D. houi and D. la'kuchii could not be resolved. Integrating our results with those of previous studies, we hypothesized that D. kikuchii, D. punctatus and D. superans evolved from the basal ancestor because of sex pheromone mutations and environmental pressure.展开更多
基金supported by the National Basic Research Program of China(2012CB114104)the National Natural Science Foundation of China(30871640,31071694)+1 种基金the National High-Tech R&D Program of China(2008AA02Z307)the International Cooperation and Exchange Foundation of NSFC-RS of China(31111130203).
文摘The full-length sequence of the odorant binding protein 5 gene,HarmOBP5,was obtained from an antennae cDNA library of cotton bollworm,Helicoverpa armigera (Hübner).The cDNA contains a 444 bp open reading frame,encoding a protein with 147 amino acids,namely HarmOBP5.HarmOBP5 was expressed in Escherichia coli and the recombinant protein was purified by affinity chromatography.SDS-PAGE and Western blot analysis demonstrated that the purified protein can be used for further investigation of its binding characteristics.Competitive binding assays with 113 odorant chemicals indicated that HarmOBP5 has strong affinity to some special plant volatiles,including (E)-β-farnesene,ethyl butyrate,ethyl heptanoate,and acetic acid 2-methylbutyl ester.Based on three-dimensional (3D) model of AaegOBP1 from Aedes aegypti,a 3D model of HarmOBP5 was predicted.The model revealed that some key binding residues in HarmOBP5 may play important roles in odorant perception of H.armigera.This study provides clues for better understanding physiological functions of OBPs in H.armigera and other insects.
基金supported by the National Natural Science Foundation of China (31230062 and 31321004)the Beijing Natural Science Foundation of China (6132028)the State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences (SKLOF201502)
文摘Strategies for insect population control are currently targeting chemical communication at the molecular level. The diamondback moth Plutella xylostella represents one of the most serious pests in agriculture, however detailed information on the proteins mediating olfaction in this species is still poor. This species is endowed with a repertoire of a large number of olfactory receptors and odorant binding proteins(OBPs). As a contribution to map the specificities of these chemical sensors in the moth and eventually unrave l the complexity of chemodetection, we have measured the affinities of three selected OBPs to a series of potential odorants. Three proteins are highly divergent in their amino acid sequences and show markedly different expression profiles. In fact, PxylOBP3 is exclusively expressed in the antennae of both sexes, PxylOBP9 is male specific and present only in antennae and reproductive organs, while PxylOBP19, an unusual OBP with nine cysteines, is ubiquitously present in all the organs examined. Such expression pattern suggests that the last two proteins may be involved in non-chemosensory functions. Despite such differences, the three OBPs exhibit similar binding spectra, together with high selectivity. Among the 26 natural compounds tested, only two proved to be good ligands, retinol and coniferyl aldehyde. This second compound is particularly interesting being part of the chemical pathway leading to regeneration of lignin, one of the defense strategies of the plant against insect attack, and might find applications as a repellent for P. xylostella and other pests.
基金supported by a grant from the National Natural Science Foundation of China (31372264)the Special Fund for Agro-Scientific Research in the Public Interest,China (201203036)
文摘Odorant binding proteins (OBPs) in insects are postulated to solubilize and transport the hydrophobic odorants across the hydrophilic antennal lymph to the olfactory receptors (ORs) located on the dendrite membrane of the sensory neurons. OBPs in adult insects have been intensively reported, but those in larvae are rarely addressed. In our study, a full-length OBP cDNA, namely SexiOBP13, was cloned by RT-PCR and RACE strategy from the heads of Spodoptera exigua larvae. The quantitative real-time PCR (qPCR) measurement indicated that SexiOBP13 was highly expressed in larval head, but very low in other parts of larva and was not detected in any tissues of adult. The binding affinities of SexiOBP13 to plant volatiles and female sex pheromone components were measured by competitive binding assays. Interestingly, SexiOBP13 displayed a high binding affinity (Ki=3.82 IJmol L-1) to Z9,E12-14:Ac, the major sex pheromone component of S. exigua, while low affinities to the tested host plant volatiles (Ki〉27 μmol L-l). The behavioral tests further confirmed that Z9,E12-14:Ac was indeed active to elicit the behavioral activity of the third instar larvae of S. exigua. Taken together, our results suggest that SexiOBP13 may play a role in reception of female sex pheromone in S. exigua larvae. The ecological significance of the larvae preference to the adult female sex pheromone was discussed.
文摘Olfaction plays a major role in host-seeking behaviour of mosquitoes. An informat- ics-based genome-wide analysis of odorant-binding protein (OBP) homologues is under- taken, and 32 putative OBP genes in total in the whole genome sequences of Anopheles gam- biae are identified. Tissue-specific expression patterns of all A. gambiae OBP candidates are determined by semi-quantitative Reverse Transcription (RT)-PCR using mosquito actin gene a internal expression control standard. The results showed that 20 OBP candidates had strong expression in mosquito olfactory tissues (female antennae), which indicate that OBPs may play an important role in regulating mosquito olfactory behaviours. Species-specific expression pat- terns of all putative anopheline OBPs are also studied in two of the most important malaria vec- tors in A. gambiae complex, i.e. A. gambiae and A. arabiensis, which found 12 of the putative OBP genes examined displayed species-differential expression patterns. The cumulative relative expression intensity of the OBPs in A. arabiensis antennae was higher than that in A. gambiae (the ratio is 1441.45:1314.12), which might be due to their different host preference behaviour. While A. gambiae is a highly anthropophilic mosquito, A. arabiensis is more opportunistic (Vary- ing from anthropophilic to zoophilic). So the latter should need more OBPs to support its host selection preference. Identification of mosquito OBPs and verification of their tissue- and spe- cies-specific expression patterns represent the first step towards further molecular analysis of mosquito olfactory mechanism, such as recombinant expression and ligand identification.
文摘The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8?341 expressed sequence tags was generated from Roche 454 GS-FLX sequencing of eight tissue-specific cDNA libraries. Putative chemosensory proteins (12) and odorant binding proteins (OBPs) (18) were annotated, which included three putative general OBP (GOBP), one more than typically reported for other Lepidoptera. To further characterize CpomGOBPs, we cloned cDNA copies of their transcripts and determined their expression patterns in various tissues. Cloning and sequencing of the 698?nt transcript for CpomGOBP1 resulted in the prediction of a 163 amino acid coding region, and subsequent RT-PCR indicated that the transcripts were mainly expressed in antennae and mouthparts. The 1?289 nt (160 amino acid) CpomGOBP2 and the novel 702 nt (169 amino acid) CpomGOBP3 transcripts are mainly expressed in antennae, mouthparts, and female abdomen tips. These results indicate that next generation sequencing is useful for the identification of novel transcripts of interest, and that codling moth expresses a transcript encoding for a new member of the GOBP subfamily.
基金Supported by a grant from the National Basic Research and Development Program of China (2006CB102005)the Special Scientific Research Fund for Commonweal Trade of China (200803005)
文摘A cDNA encoding the general odorant binding protein Ⅱ(GOBP Ⅱ) was isolated from the antennae of Spodoptera litura(SlGOBP Ⅱ,GenBank Accession No.EU086371) by homologous cloning and rapid amplification of cDNA ends(RACE).Sequencing and structural analyses revealed that the open reading frame(ORF) of SlGOBP Ⅱ was 489 bp,encoding 162 amino acids with a predicted MW of 18.2 kD and pI of 5.72.SlGOPB Ⅱ shared typical structural features of odorant binding proteins with other insects,including the six conservative cysteine residues.The deduced amino acid sequence of SlGOPB Ⅱ shared significant identity with the GOBP Ⅱ from S.frugiperda and S.exigua.RT-PCR and Northern blot analyses showed that SlGOBP Ⅱ was specifically expressed in the antennae.cDNA encoding SlGOBP Ⅱ was constructed into the pET-32a vector and the recombinant protein was highly expressed in Escherichia coli BL21(DE3) after induction with IPTG.SDS electrophoresis and Western blot analysis confirmed the molecular weight of the recombinant SIGOBPⅡ i.e,32 kD,which has a 6×His tag at the N-terminus.The recombinant SlGOBP Ⅱ was purified by single-step Ni-NTA affinity chromatography and used to raise antiserum in rabbits.ELISA showed that the titer of antiserum was 1:12800,while Western blot analysis showed that the recombinant SlGOBP Ⅱ was recognized as anti-SlGOBP Ⅱ antiserum.
文摘Odorant-binding proteins (OBPs) are soluble proteins mediating chemorecep- tion in insects. In previous research, we investigated the molecular mechanisms adopted by aphids to detect the alarm pheromone (E)-fl-farnesene and we found that the recogni- tion of this and structurally related molecules is mediated by OBP3 and OBP7. Here, we show the differential expression patterns of 5 selected OBPs (OBP 1, OBP3, OBP6, OBPT, OBPS) obtained performing quantitative RT-PCR and immunolocalization experiments in different body parts of adults and in the 5 developmental instars, including winged and unwinged morphs, of the pea aphid Acyrthosiphon pisum. The results provide an overall picture that allows us to speculate on the relationship between the differential expression of OBPs and their putative function. The expression of OBP3, OBP6, and OBP7 in the antennal sensilla suggests a ehemosensory fimction for these proteins, whereas the con- stant expression level of OBP8 in all instars could suggest a conserved role. Moreover, OBP1 and OBP3 are also expressed in nonsensory organs. A light and scanning electron microscopy study of sensilla on different body parts of aphid, in particular antennae, legs, mouthparts, and coruicles-cauda, completes this research providing a guide to facilitate the mapping of OBP expression profiles.
基金supported by the National Key Basic Research Program of China(2007CB109202)the National High-Technology Research and Development Program of China(2008BAD5B05)National Natural Science Foundation of China(31071694)
文摘Credible evidence shows that odorant binding proteins(OBPs)are required for insect olfaction perception and play a key role in transporting hydrophobic odorants across the sensillum lymph to the olfactory receptors(ORs).In the present study,a novel OBP(AlinOBP3)gene from the lucerne plant bug,Adelphocoris lineolatus,was cloned and expressed.The expression pattern of AlinOBP3 was evaluated by qPCR,which indicated that AlinOBP3 was dominantly expressed in antennae.The binding properties of AlinOBP3 with 9 cotton volatiles and 5 sex pheromone analogs were measured by fluorescence competitive binding assays with the fluorescence probe 1-NPN.The results revealed that of 9 cotton volatiles,Myrcene,β-Ocimene and α-Phellandrene can bind with AlinOBP3.α-Phellandrene especially bound to AlinOBP3 with a high binding affinity,with a dissociation constant of 56.68 μmol/L.Of the 5 sex pheromone analogs,Hexyl butyrate had the strongest binding affinity with AlinOBP3,with a dissociation constant as 59.53 μmol/L.Butyl butyrate,trans-2-Hexenyl butyrate and Ethyl butyrate had medium binding affinities with AlinOBP3,with dissociation constants of 227.39,108.77 and 143.47 μmol/L,respectively.The results suggest that AlinOBP3 might be a pheromone binding protein(PBP)with a dual-function for the perception of sex pheromones and plant volatiles.
文摘Proteomic analyses were done on 2 chemosensory appendages of the lone star tick, Amblyomma americanum. Proteins in the fore tarsi, which contain the olfactory Haller's organ, and in the palps, that include gustatory sensilla, were compared with proteins in the third tarsi. Also, male and female ticks were compared. Proteins were identified by sequence similarity to known proteins, and by 3-dimensional homology modeling. Proteomic data were also compared with organ-specific transcriptomes from the tick Rhipicephalus microplus. The fore tarsi express a lipocalin not found in the third tarsi or palps. The fore tarsi and palps abundantly express 2 proteins, which are similar to insect odorant-binding proteins (OBPs). Compared with insect OBPs, the tick OBP-like sequences lacked the cysteine absent in C-minus OBPs, and 1 tick OBP-like sequence had additional cysteines that were similar to C-plus OBPs. Four proteins similar to the antibiotic protein microplusin were found: 2 exclusively expressed in the fore tarsi and 1 exclusively expressed in the palps. These proteins lack the microplusin copper-binding site, but they are modeled to have a significant internal cavity, potentially a ligand-binding site. Proteins similar to the dust mite allergens Der p7 and Der f 7 were found differentially expressed in female fore tarsi. A protein exclusively expressed in the fore tarsi has similarities to Neto, which is known to be involved in clustering ofionotropic glutamate receptors. These results constitute the first report of OBP-like protein sequences in ticks and point to several research avenues on tick chemosensory reception.
基金Acknowledgments We thank Lin Xiong and Xi-Yong Huang for providing the insects. We are grateful to anonymous reviewers for valuable comments and suggestions on earlier versions of this manuscript. This work was supported by the National Natural Science Foundation of China (31200492) and the Institute Special Fund for Basic Research, Institute of Forest Ecology, Environment, and Protection, Chinese Academy of Forestry (CAFRIFEEP201102-5).
文摘Pine caterpillar moths, Dendrolimus spp. (Lepidoptera: Lasiocampidae), are serious economic pest of pines. Previously, phylogenetic analyses of Dendrolimus using different methods yielded inconsistent results. The chemosensory systems of insects may play fundamental roles in promoting speciation. Odorant-binding proteins (OBPs) participate in the first step of odor detection. Studying the evolution of OBPs in closely related species may help us to identify their role in speciation. We identified three OBPs - one pheromone-binding protein and two general odorant-binding proteins - from male antennae of four Dendrolimus species, D. superans (Butler), D. punctatus (Walker), D. kikuchii Matsumura, and D. houi Lajonquiere, the olfactory recognition systems of which had not been previously investigated. We analyzed their molecular characteristics and compared their sequences to those of OBPs in D. tabulaeformis Tsai et Liu. Ka/Ks ratio analyses among the five Dendrolimus species indicate that PBP1 genes experienced more evolutionary pressure than the GOBPs. Phylogenetic relationships of PBP1 and GOBP1 both indicated that D. houi was the basal species, then branched D. kikuchii, while D. tabulaeformis, D. punctatus, and D. superans evolved more recently. These relationships are consistent with the changes in sex pheromone components of these five species. Dendrolimus tabulaeformis and D. punctatus are closely related sister species. However, the distances among GOBP2 sequences in the five Dendrolimus were very short, and the relationships of D. houi and D. la'kuchii could not be resolved. Integrating our results with those of previous studies, we hypothesized that D. kikuchii, D. punctatus and D. superans evolved from the basal ancestor because of sex pheromone mutations and environmental pressure.