A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back o...A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back of Chinese milk vetch for 5consecutive years.Six treatments were included in the experiment,they are CK(unfertilized),CF(100% chemical fertilizer with the amount of N,P2O5,K2 O being150,75,120 kg/hm^2respectively),A1(22 500 kg/hm^2 Chinese milk vetch and 100%chemical fertilizer),A2(Chinese milk vetch and 80% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A3(Chinese milk vetch and 60% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A4(Chinese milk vetch and 40% nitrogen and potassium fertilizer and 100% phosphate fertilizer).The results were as follows:application of fertilizer could increase the yield of rice,while Chinese milk vetch combined with fertilizer application had a much more increase effect in rice yield.Under the condition of milk vetch application with 22 500 kg/hm^2,the early rice yield of the treatment A1 was significantly increased by 7.7% compared with that of CF.And the yield of treatment A3 was basically identical to or slight increase in comparison with that of CF.Decreasing amount of fertilizers cloud improve output value of rice in the case of the utilization of Chinese milk vetch.The treatment A1 increased output value of rice by 5.92% in comparison of CF,and treatment A2 was by 4.08% in the next.Treatment A4 showed much better effect in increasing soil organic carbon and total nitrogen in the paddy soil than those of treatments applying mineral fertilizer only.There was a significant reduction on soil organic carbon and TN in treatment A2 in comparison with that of CF.In general,amount of application of milk vetch with 22 500 kg/hm^2 could replace chemical fertilizer partially,it also could improve rice yield,decrease the production cost,and raise the utilization efficiency of nutrients.展开更多
Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for ...Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for soiI water utiIization in eucalyptus pIanting in the red soiI hiI y region of South China. [Method] In the same cIimatic region, soiI sampIes were coI ected from surface soiI Iayer (A), iI uvial horizon (B) and parent material horizon (C) in the upper sIope, middIe sIope and Iower sIope of eucalyptus pIantation, native forest and pine forest, respectiveIy, to determine the soiI porosity and soiI water content and analyze changes and various infIuencing factors of soiI water content in horizontal and vertical direction. [Result] Average soiI porosity in eucalyptus pIantation, native forest and pine forest was 45.9%, 41.4%and 55.3%, respectiveIy; soiI water content in these three forest stands was 13.3%, 13.4% and 15.5%, respectiveIy. In addition, soiI water content in these three forest stands exhibited no significant differences (P>0.05) among different soiI profiIes and sIope positions, but soiI water content in surface soiI Iayer varied significantIy (P<0.05) among different forest stands; in the horizontal direction, soiI water content exerted an extremeIy significant positive correIation with total coverage. [Conclusion] Total coverage of canopy Iayer, herb and Iitter Iayer is one of the most critical fac-tors affecting the changes of soiI water content in surface soiI Iayer of forest stands.展开更多
Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small water...Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small watershed of subtropical region of China was selected for this study. Land uses covered paddy fields, vegetable farming, fruit trees, upland crops, bamboo stands, and forestry. Soil biological and biochemical properties included soil organic C and nutrient contents, mineralization of soil organic C, and soil microbial biomass and community functional diversity. Soil organic C and total N contents, microbial biomass C and N, and respiration intensity under different land uses were changed in the following order: paddy fields (and vegetable farming) 〉 bamboo stands 〉 fruit trccs (and upland). The top surface (0-15 cm) paddy fields (and vegetable farming) were 76.4 and 80.8% higher in soil organic C and total N contents than fruit trees (and upland) soils, respectively. Subsurface paddy soils (15-30 cm) were 59.8 and 67.3% higher in organic C and total N than upland soils, respectively. Soil microbial C, N and respiration intensity in paddy soils (0-15 cm) were 6.36, 3.63 and 3.20 times those in fruit tree (and upland) soils respectively. Soil microbial metabolic quotient was in the order: fruit trees (and upland) 〉 forestry 〉 paddy fields. Metabolic quotient in paddy soils was only 47.7% of that in fruit tree (and upland) soils. Rates of soil organic C mineralization during incubation changed in the order: paddy fields 〉 bamboo stands 〉 fruit trees (and upland) and soil bacteria population: paddy fields 〉 fruit trees (and upland) 〉 forestry. No significant difference was found for fungi and actinomycetes populations. BIOLOG analysis indicated a changing order of paddy fields 〉 fruit trees (and upland) 〉 forestry in values of the average well cell development (AWCD) and functional diversity indexes of microbial community. Results also showed that the conversion from paddy fields to vegetable farming for 5 years resulted in a dramatic increase in soil available phosphorus content while insignificant changes in soil organic C and total N content due to a large inputs of phosphate fertilizers. This conversion caused 53, 41.5, and 41.3% decreases in soil microbial biomass C, N, and respiration intensity, respectively, while 23.6% increase in metabolic quotient and a decrease in soil organic C mineralization rate. Moreover, soil bacteria and actinomycetes populations were increased slightly, while fungi population increased dramatically. Functional diversity indexes of soil microbial community decreased significantly. It was concluded that land uses in the subtropical region of China strongly affected soil biological and biochemical properties. Soil organic C and nutrient contents, mineralization of organic C and functional diversity of microbial community in paddy fields were higher than those in upland and forestry. Overuse of chemical fertilizers in paddy fields with high fertility might degrade soil biological properties and biochemical function, resulting in deterioration of soil biological quality.展开更多
[Objective] The aim of this study was to study the influence of plants on the soil moisture content under different fertilization.[Method] Using sainfoin,sweet clover,Astragalus adsurgens,alfalfa,ryegrass,little flowe...[Objective] The aim of this study was to study the influence of plants on the soil moisture content under different fertilization.[Method] Using sainfoin,sweet clover,Astragalus adsurgens,alfalfa,ryegrass,little flower,white clover as experimental material,this study explored the effects of soil moisture on the improvement of soil quality.[Result] Results showed that the soil moisture content of different plants follows as:sainfoin 〉sweet clover 〉Astragalus adsurgens 〉alfalfa perennial ryegrass 〉small crown 〉white clover,and the average moisture content reached 24.13% which was 2.45% higher than that of control group.At planting white clover,sweet clover,under the condition of 7 kinds of crops,in the treatments without fertilizer and with organic fertilizer,soil moisture content of soil in 0-20 cm grew significantly.[Conclusion] The application of organic fertilizer and growing of plants would improve soil moisture in abandoned fields,enhance the ability of soil water supply,and improve soil fertility.展开更多
In order to assess the effects of chemical properties of soil salinity on electrical conductivity of 1:5 soil/water extract (EC1:5), the study focused on revealing the main chemical factors contributing to EC of s...In order to assess the effects of chemical properties of soil salinity on electrical conductivity of 1:5 soil/water extract (EC1:5), the study focused on revealing the main chemical factors contributing to EC of soil extracts and their relative importance. The relationship between EC1:5 and the chemical properties of soil salinity in the delta oasis of Weigan and Kuqa rivers, China, were studied using path coefficient analysis, a path analysis method. We studied each key element affecting EC1:5 either directly or indirectly. The results obtained show that the salt content, total dissolved solids (TDS), and the sum of the sodium ion concentration and the kalium ion concentration are the most influential factors on 1:5 soil/ water extract (EC1:5) in the 0-10 cm and the 30-50 cm soil layer. The results show that the sequence of direct path coefficients in the 0-10 cm and the 30-50 cm soil layers on soil conductivity is TDS→Na^+ + K^+→Salt content→Ca^2+→Cl-→the sodium dianion ratio (SDR)→pH→ SO4^2-→HCO3^-→Mg^2+→the soluble sodium percentage (SSP) sodium absorption ratio (SAR) and TDS→Salt content→Na^+ + K^+→Ca^2+→SDR→Mg^2+→HCO3^-→SSP→pH→SO4^2-→SAR→Cl^-. The salt content, chlorine ion, and SAR are the main factors affecting 1:5 soil/water extract (EC1:5) in the 10-30 centimeter soil layer. The order of direct path coefficients result is as follows: Salt content→Cl^-→SAR→SSP→TDS→Ca^2+→Mg^2+= SO4^2-→HCO3^-→pH→SDR→Na^- + K^+. Moreover, the effects of HCO3^-, pH were very weak. Though the direct path coefficients between EC1:5 and SAR, SO4^2- and Ca^2+ were not high, influence of other chemical factors caused the coefficients to increase, making the summation of their direct and indirect path coefficients relatively high. The models of the different soil layers were structured separately. Evidences showed that multiple regression relations between EC1:5 and most of the primary factors had sound reliability and very good accuracy. The research results can serve as a reference to the scientific management amelioration and utilization of saline in the Delta Oasis of Weigan and Kuqa rivers.展开更多
Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studi...Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studies examining soil particle volume fractal dimension in alpine grasslands.To study the volume fractal dimension of soil particles (D) and its relationships with soil salt,soil nutrient and plant species diversity,we conducted an experiment on an alpine grassland under different disturbance degrees:non-disturbance (N0),light disturbance (L),moderate disturbance (M) and heavy disturbance (H).The results showed that (1) Ds varied from 2.573 to 2.635 among the different disturbance degrees and increased with increasing degrees of disturbance.(2) Shannon-Wiener diversity index,Pielou's evenness index and Margalef richness index reached their highest values at the M degree,indicating that moderate disturbance is beneficial to the increase of plant species diversity.(3) In the L and M degrees,there was a significant positive correlation between D and clay content and a significant negative correlation between D and soil organic matter (SOM).In the H degree,D was significantly and positively correlated with total salt (TS).The results suggested that to a certain extent,D can be used to characterize the uniformity of soil texture in addition to soil fertility characteristics.(4) For the L degree,there was a significant negative correlation between D and the Shannon-Wiener diversity index; while for the M degree,there was a significant negative correlation between D and Pielou's evenness index.展开更多
To evaluate the diurnal and seasonal variations in soil respiration (Rs) and understand the controlling factors, we measured carbon dioxide (CO2) fluxes and their environmental variables using a LI-6400 soil CO2 f...To evaluate the diurnal and seasonal variations in soil respiration (Rs) and understand the controlling factors, we measured carbon dioxide (CO2) fluxes and their environmental variables using a LI-6400 soil CO2 flux system at a temperate Leymus chinensis meadow steppe in the western Songnen Plain of China in the growing season (May-October) in 2011 and 2012. The diurnal patterns of soil respiration could be expressed as single peak curves, reaching to the maximum at 11:00-15:00 and falling to the minimum at 21:00-23:00 (or before dawn). The time-window between 7:00 and 9:00 could be used as the optimal measuring time to represent the daily mean soil CO2 efflux. In the growing season, the daily value of soil CO2 efflux was moderate in late spring (1.06-2.51μnol/(m2.s) in May), increased sharply and presented a peak in summer (2.95-3.94 μmol/(m2.s) in July), and then decreased in autumn (0.74-0.97 μmol/(m2.s) in October). Soil temperature (Ts) exerted dominant control on the diurnal and seasonal variations of soil respiration. The temperature sensitivity of soil respiration (Q10) exhibited a large seasonal variation, ranging from 1.35 to 3.32, and decreased with an increasing soil temperature. Rs gradually increased with increasing soil water content (Ws) and tended to decrease when Ws exceeded the optimum water content (27%) of Rs. The Ts and Ws had a confounding effect on Rs, and the two-variable equations could account for 72% of the variation in soil respiration (p 〈 0.01).展开更多
This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equall...This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equally into n layers while load and consolidation time are also divided into small parts and time intervals accordingly. The problem of one-dimensional consolidation of soil stratum under cyclic loading can then be dealt with at each time interval as one-dimensional linear consolidation of multi-layered soils under constant loading. The compression or rebounding of each soil layer can be judged by the effective stress of the layer. When the effective stress is larger than that in the last time interval, the soil layer is compressed, and when it is smaller, the soil layer rebounds. Thus, appropriate compressibility can be chosen and the consolidation of the layered system can be analyzed by the available analytical linear consolidation theory. Based on the semi-analytical method, a computer program was developed and the behavior of one-dimensional consolidation of soil with varied compressibility under cyclic loading was investigated, and compared with the available consolidation theory which takes no consideration of varied compressibility of soil under cyclic loading. The results showed that by taking the variable compressibility into account, the rate of consolidation of soil was greater than the one predicted by conventional consolidation theory.展开更多
The investigation was carried out to study the response of winter rapeseed to potassium (K) feritlization and the critical soil available K level for current winter rapeseed production in the Yangtze River Valley (...The investigation was carried out to study the response of winter rapeseed to potassium (K) feritlization and the critical soil available K level for current winter rapeseed production in the Yangtze River Valley (YRV) of China. A total of 132 field experiments were conducted in fields of farmers in the major winter rapeseed growing areas in YRV in 2000/2001 and 2004/2005 to 2006/2007 during growing season. Results of these field experiments showed that the average rapeseed yield increment resulting from 100 kg K ha-1 application was 358 kg ha-1, an increase over the control CK (no K) of 18.0% in 2005/2006 and 2006/2007. The average internal use efficiency (IE) of K was higher in the CK treatment (21.9 kg grain, kg-1 K uptake) than in the +K (100 kg K ha-1) treatment (17.7 kg grain, kg-1 K uptake). Winter rapeseed required 68.1 kg of K to produce 1 000 kg seed. The recovery efficiency of K fertilizer in rapeseed production averaged 39.3%. The K balance was negative, with an average net removal of 117.6 kg K ha-1 in the CK treatment annually, and 56.8 kg K ha-1 in the +K treatment. The results indicated that there was a significant negative relationship between yield increments by K application and soil available K content. Based on the relative yield of CK/+K at 90% level, the critical level of soil available K (NH4OAc-extractable K) was 135 mg kg-1.展开更多
The theory of soil and water ecology is an important scientific issue related to the fundamental and overall situation of ecological environment and has important strategic significance for the protection of the earth...The theory of soil and water ecology is an important scientific issue related to the fundamental and overall situation of ecological environment and has important strategic significance for the protection of the earth’s ecological environment.Applying the theory of soil and water ecology to soil and water conservation can upgrade soil and water conservation from version 1.0 to version 2.0 of soil and water ecological conservation and further expand the space of soil and water conservation.The paper suggests that while giving full play to the existing strength of soil and water conservation departments,it should establish national soil and water conservation commission for coordinating multi sector forces and vigorously promoting the realization of beautiful and rich China.展开更多
The soil heavy metals(Hg and As)in Duanzhou District of Zhaoqing City were determined by AFS200 T atomic fluorescence spectropho-tometer,and the soil environment in Duanzhou District was evaluated by several evaluatio...The soil heavy metals(Hg and As)in Duanzhou District of Zhaoqing City were determined by AFS200 T atomic fluorescence spectropho-tometer,and the soil environment in Duanzhou District was evaluated by several evaluation methods of soil heavy metal pollution,such as single factor index method,pollution load index method and Nemerow comprehensive pollution index method.Finally,according to the data and conclu-sions,the soil pollution situation in Duanzhou District of Zhaoqing was analyzed.The results will let more people pay attention to the changes of the environment and realize the harm of the environment,and the government can formulate a new plan conducive to the coordinated development of the environment and economy.展开更多
The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high co...The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu. Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts. 1990 Academic Press, Inc.展开更多
The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic bala...The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed.展开更多
In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due ...In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due to a braced excavation. The spatial variability of soil stiffness is modelled using a variogram and calibrated by high-quality experimental data. Multiple random field samples (RFSs) of soil stiffness are generated using geostatistical analysis and mapped onto a finite element mesh for stochastic analysis of excavation-induced structural responses by Monte Carlo simulation. It is found that the spatial variability of soil stiffness can be described by an exponential variogram, and the associated vertical correlation length is varied from 1.3 m to 1.6 m. It also reveals that the spatial variability of soil stiffness has a significant effect on the variations of retaining wall deflections and box culvert settlements. The ignorance of spatial variability in 3D FEM can result in an underestimation of lateral wall deflections and culvert settlements. Thus, the stochastic structural responses obtained from the 3D analysis could serve as an effective aid for probabilistic design and analysis of excavations.展开更多
This study investigates the impact of soil moisture availability on dispersion-related characteristics: surface friction velocity (u* ), characteristic scales of temperature and humidity (T * and q * ), the planetary ...This study investigates the impact of soil moisture availability on dispersion-related characteristics: surface friction velocity (u* ), characteristic scales of temperature and humidity (T * and q * ), the planetary boundary layer height (h) and atmospheric stability classified by Monin-Obukhov length (L), Kazanski-Monin parameter (μ) and convective velocity scale (w* ) during daytime convective condition using a one-dimensional primitive equation with a refined soil model.展开更多
The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a re...The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.展开更多
On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Mal...On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.展开更多
The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq....The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.展开更多
The study aimed to evaluate soil quality using microarthopods density, diversity and soil biological quality index (QBS-ar) under different land use systems and elevation gradients. A secondary aim was to determine ...The study aimed to evaluate soil quality using microarthopods density, diversity and soil biological quality index (QBS-ar) under different land use systems and elevation gradients. A secondary aim was to determine the relationship among soil biological and physiochemical indicators. Three groups of soil microarthropods were recognized viz. (1) Collembola (38%) (2) Acarina (33%) and (3) other microarthropods (29%). ANOVA indicated that total microarthropods densities differed significantly with land use and elevation. Population density of Acarina and other mieroarthropods were weakly significant different according to land use, while Collembola and Acarina densities showed highly significant difference with elevation. Total microarthropods, Acarina and Collembola densities were positively significantly correlated with soil organic carbon (SOC) and moisture but negatively correlated with bulk density, pH and temperature of the soil. SOC and soil moisture appeared to be good indicators of soil quality as reflected by the higher density and diversity of soil total microarthropods, Collembola, Acarina and other microarthropods group. The use of microarthropods for soil quality assessment could be effective and relatively inexpensive tool; however, further research is required to evaluate the impact of agricultural practices and elevation gradient on soil microarthropods density, diversity and species composition for the sustainable management of agro ecosystems.展开更多
In carbon global cycle, the relationship between the terrestrial ecosystem and the atmosphere where there are, among others, gases that contribute to the greenhouse effect, has become object of relevant scientific int...In carbon global cycle, the relationship between the terrestrial ecosystem and the atmosphere where there are, among others, gases that contribute to the greenhouse effect, has become object of relevant scientific interest. The content of organic matter in soil, expressed by its supplies as well as the organic matter degree of stability, are factors that can prevent the soil from acting as a drain and at the same time contribute for it to become a source of those gases. The variations in the way land is used in Brazil are factors responsible for the increase in emission of greenhouse effect gases. Based on these facts, this study was aimed to evaluate the CO2 and CH4 efflux using a gas retention chamber, and to associate these emissions to the organic carbon content in the soil. Two different areas were selected for the study, one in Tijuca Forest National Park, in a forest area, and the other at the Rio de Janeiro Federal Rural University campus. In the latter, the area was stratified in three sub areas according to the vegetation, use and water saturation degree. Samplings were performed during 8 months between 2013 and 2014.展开更多
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201103005-08)National Science and Technology Support Program during the 12thFive-year Plan(2012BAD05B05-3)International Plant Nutrition Institute S&T Program(Hunan-16)~~
文摘A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back of Chinese milk vetch for 5consecutive years.Six treatments were included in the experiment,they are CK(unfertilized),CF(100% chemical fertilizer with the amount of N,P2O5,K2 O being150,75,120 kg/hm^2respectively),A1(22 500 kg/hm^2 Chinese milk vetch and 100%chemical fertilizer),A2(Chinese milk vetch and 80% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A3(Chinese milk vetch and 60% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A4(Chinese milk vetch and 40% nitrogen and potassium fertilizer and 100% phosphate fertilizer).The results were as follows:application of fertilizer could increase the yield of rice,while Chinese milk vetch combined with fertilizer application had a much more increase effect in rice yield.Under the condition of milk vetch application with 22 500 kg/hm^2,the early rice yield of the treatment A1 was significantly increased by 7.7% compared with that of CF.And the yield of treatment A3 was basically identical to or slight increase in comparison with that of CF.Decreasing amount of fertilizers cloud improve output value of rice in the case of the utilization of Chinese milk vetch.The treatment A1 increased output value of rice by 5.92% in comparison of CF,and treatment A2 was by 4.08% in the next.Treatment A4 showed much better effect in increasing soil organic carbon and total nitrogen in the paddy soil than those of treatments applying mineral fertilizer only.There was a significant reduction on soil organic carbon and TN in treatment A2 in comparison with that of CF.In general,amount of application of milk vetch with 22 500 kg/hm^2 could replace chemical fertilizer partially,it also could improve rice yield,decrease the production cost,and raise the utilization efficiency of nutrients.
基金Supported by National Natural Science Foundation of China(U1033004)Open Fund of Key Laboratory of Plant Nutrition and Fertilizer,Ministry of Agriculture(2012-03)+3 种基金Major Science and Technology Project of Guangxi Zhuang Autonomous Region(GKZ1347001)Natural Science Foundation of Guangxi Zhuang Autonomous Region(2012GXNSFAA053066)Special Fund for the Basic Research and Operating Expenses of Guangxi Academy of Agricultural Sciences(GNK2013YM11,GNK2015YM11)Open Project of Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation(13B0201)~~
文摘Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for soiI water utiIization in eucalyptus pIanting in the red soiI hiI y region of South China. [Method] In the same cIimatic region, soiI sampIes were coI ected from surface soiI Iayer (A), iI uvial horizon (B) and parent material horizon (C) in the upper sIope, middIe sIope and Iower sIope of eucalyptus pIantation, native forest and pine forest, respectiveIy, to determine the soiI porosity and soiI water content and analyze changes and various infIuencing factors of soiI water content in horizontal and vertical direction. [Result] Average soiI porosity in eucalyptus pIantation, native forest and pine forest was 45.9%, 41.4%and 55.3%, respectiveIy; soiI water content in these three forest stands was 13.3%, 13.4% and 15.5%, respectiveIy. In addition, soiI water content in these three forest stands exhibited no significant differences (P>0.05) among different soiI profiIes and sIope positions, but soiI water content in surface soiI Iayer varied significantIy (P<0.05) among different forest stands; in the horizontal direction, soiI water content exerted an extremeIy significant positive correIation with total coverage. [Conclusion] Total coverage of canopy Iayer, herb and Iitter Iayer is one of the most critical fac-tors affecting the changes of soiI water content in surface soiI Iayer of forest stands.
基金the National Natural Science Foundation of China (40471066) the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX3-SW-417).
文摘Changes in soil biological and biochemical properties under different land uses in the subtropical region of China were investigated in order to develop rational cultivation and fertilization management. A small watershed of subtropical region of China was selected for this study. Land uses covered paddy fields, vegetable farming, fruit trees, upland crops, bamboo stands, and forestry. Soil biological and biochemical properties included soil organic C and nutrient contents, mineralization of soil organic C, and soil microbial biomass and community functional diversity. Soil organic C and total N contents, microbial biomass C and N, and respiration intensity under different land uses were changed in the following order: paddy fields (and vegetable farming) 〉 bamboo stands 〉 fruit trccs (and upland). The top surface (0-15 cm) paddy fields (and vegetable farming) were 76.4 and 80.8% higher in soil organic C and total N contents than fruit trees (and upland) soils, respectively. Subsurface paddy soils (15-30 cm) were 59.8 and 67.3% higher in organic C and total N than upland soils, respectively. Soil microbial C, N and respiration intensity in paddy soils (0-15 cm) were 6.36, 3.63 and 3.20 times those in fruit tree (and upland) soils respectively. Soil microbial metabolic quotient was in the order: fruit trees (and upland) 〉 forestry 〉 paddy fields. Metabolic quotient in paddy soils was only 47.7% of that in fruit tree (and upland) soils. Rates of soil organic C mineralization during incubation changed in the order: paddy fields 〉 bamboo stands 〉 fruit trees (and upland) and soil bacteria population: paddy fields 〉 fruit trees (and upland) 〉 forestry. No significant difference was found for fungi and actinomycetes populations. BIOLOG analysis indicated a changing order of paddy fields 〉 fruit trees (and upland) 〉 forestry in values of the average well cell development (AWCD) and functional diversity indexes of microbial community. Results also showed that the conversion from paddy fields to vegetable farming for 5 years resulted in a dramatic increase in soil available phosphorus content while insignificant changes in soil organic C and total N content due to a large inputs of phosphate fertilizers. This conversion caused 53, 41.5, and 41.3% decreases in soil microbial biomass C, N, and respiration intensity, respectively, while 23.6% increase in metabolic quotient and a decrease in soil organic C mineralization rate. Moreover, soil bacteria and actinomycetes populations were increased slightly, while fungi population increased dramatically. Functional diversity indexes of soil microbial community decreased significantly. It was concluded that land uses in the subtropical region of China strongly affected soil biological and biochemical properties. Soil organic C and nutrient contents, mineralization of organic C and functional diversity of microbial community in paddy fields were higher than those in upland and forestry. Overuse of chemical fertilizers in paddy fields with high fertility might degrade soil biological properties and biochemical function, resulting in deterioration of soil biological quality.
基金Supported by the"Twelfth Five-Year Plan"of the National Science and Technology(2011BAD31B01)~~
文摘[Objective] The aim of this study was to study the influence of plants on the soil moisture content under different fertilization.[Method] Using sainfoin,sweet clover,Astragalus adsurgens,alfalfa,ryegrass,little flower,white clover as experimental material,this study explored the effects of soil moisture on the improvement of soil quality.[Result] Results showed that the soil moisture content of different plants follows as:sainfoin 〉sweet clover 〉Astragalus adsurgens 〉alfalfa perennial ryegrass 〉small crown 〉white clover,and the average moisture content reached 24.13% which was 2.45% higher than that of control group.At planting white clover,sweet clover,under the condition of 7 kinds of crops,in the treatments without fertilizer and with organic fertilizer,soil moisture content of soil in 0-20 cm grew significantly.[Conclusion] The application of organic fertilizer and growing of plants would improve soil moisture in abandoned fields,enhance the ability of soil water supply,and improve soil fertility.
基金supported by the National Natural Science Foundation of China(40861020)the Natural Science Foundation of Xinjiang(200821128)+1 种基金the Key Laboratory of Oasis Ecology in Xinjiang University(XJDX0201-2008-03)the Fund of Young Teachers Scientific Research in Xinjiang University(QN070122),China
文摘In order to assess the effects of chemical properties of soil salinity on electrical conductivity of 1:5 soil/water extract (EC1:5), the study focused on revealing the main chemical factors contributing to EC of soil extracts and their relative importance. The relationship between EC1:5 and the chemical properties of soil salinity in the delta oasis of Weigan and Kuqa rivers, China, were studied using path coefficient analysis, a path analysis method. We studied each key element affecting EC1:5 either directly or indirectly. The results obtained show that the salt content, total dissolved solids (TDS), and the sum of the sodium ion concentration and the kalium ion concentration are the most influential factors on 1:5 soil/ water extract (EC1:5) in the 0-10 cm and the 30-50 cm soil layer. The results show that the sequence of direct path coefficients in the 0-10 cm and the 30-50 cm soil layers on soil conductivity is TDS→Na^+ + K^+→Salt content→Ca^2+→Cl-→the sodium dianion ratio (SDR)→pH→ SO4^2-→HCO3^-→Mg^2+→the soluble sodium percentage (SSP) sodium absorption ratio (SAR) and TDS→Salt content→Na^+ + K^+→Ca^2+→SDR→Mg^2+→HCO3^-→SSP→pH→SO4^2-→SAR→Cl^-. The salt content, chlorine ion, and SAR are the main factors affecting 1:5 soil/water extract (EC1:5) in the 10-30 centimeter soil layer. The order of direct path coefficients result is as follows: Salt content→Cl^-→SAR→SSP→TDS→Ca^2+→Mg^2+= SO4^2-→HCO3^-→pH→SDR→Na^- + K^+. Moreover, the effects of HCO3^-, pH were very weak. Though the direct path coefficients between EC1:5 and SAR, SO4^2- and Ca^2+ were not high, influence of other chemical factors caused the coefficients to increase, making the summation of their direct and indirect path coefficients relatively high. The models of the different soil layers were structured separately. Evidences showed that multiple regression relations between EC1:5 and most of the primary factors had sound reliability and very good accuracy. The research results can serve as a reference to the scientific management amelioration and utilization of saline in the Delta Oasis of Weigan and Kuqa rivers.
基金financially supported by the National Basic Research Program of China(2009CB825103)
文摘Fractal geometry is an important method in soil science,and many studies have used fractal theory to examine soil properties and the relationships with other eco-environmental factors.However,there have been few studies examining soil particle volume fractal dimension in alpine grasslands.To study the volume fractal dimension of soil particles (D) and its relationships with soil salt,soil nutrient and plant species diversity,we conducted an experiment on an alpine grassland under different disturbance degrees:non-disturbance (N0),light disturbance (L),moderate disturbance (M) and heavy disturbance (H).The results showed that (1) Ds varied from 2.573 to 2.635 among the different disturbance degrees and increased with increasing degrees of disturbance.(2) Shannon-Wiener diversity index,Pielou's evenness index and Margalef richness index reached their highest values at the M degree,indicating that moderate disturbance is beneficial to the increase of plant species diversity.(3) In the L and M degrees,there was a significant positive correlation between D and clay content and a significant negative correlation between D and soil organic matter (SOM).In the H degree,D was significantly and positively correlated with total salt (TS).The results suggested that to a certain extent,D can be used to characterize the uniformity of soil texture in addition to soil fertility characteristics.(4) For the L degree,there was a significant negative correlation between D and the Shannon-Wiener diversity index; while for the M degree,there was a significant negative correlation between D and Pielou's evenness index.
基金Under the auspices of Special Fund for Agro-scientific Research in Public Interest,China(No.201303095-8)National Natural Science Foundation of China(No.31100403,41101207)+1 种基金National Basic Research Program of China(No.2013CB430401)Key Laboratory of Mollisols Agroecology,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences
文摘To evaluate the diurnal and seasonal variations in soil respiration (Rs) and understand the controlling factors, we measured carbon dioxide (CO2) fluxes and their environmental variables using a LI-6400 soil CO2 flux system at a temperate Leymus chinensis meadow steppe in the western Songnen Plain of China in the growing season (May-October) in 2011 and 2012. The diurnal patterns of soil respiration could be expressed as single peak curves, reaching to the maximum at 11:00-15:00 and falling to the minimum at 21:00-23:00 (or before dawn). The time-window between 7:00 and 9:00 could be used as the optimal measuring time to represent the daily mean soil CO2 efflux. In the growing season, the daily value of soil CO2 efflux was moderate in late spring (1.06-2.51μnol/(m2.s) in May), increased sharply and presented a peak in summer (2.95-3.94 μmol/(m2.s) in July), and then decreased in autumn (0.74-0.97 μmol/(m2.s) in October). Soil temperature (Ts) exerted dominant control on the diurnal and seasonal variations of soil respiration. The temperature sensitivity of soil respiration (Q10) exhibited a large seasonal variation, ranging from 1.35 to 3.32, and decreased with an increasing soil temperature. Rs gradually increased with increasing soil water content (Ws) and tended to decrease when Ws exceeded the optimum water content (27%) of Rs. The Ts and Ws had a confounding effect on Rs, and the two-variable equations could account for 72% of the variation in soil respiration (p 〈 0.01).
文摘This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equally into n layers while load and consolidation time are also divided into small parts and time intervals accordingly. The problem of one-dimensional consolidation of soil stratum under cyclic loading can then be dealt with at each time interval as one-dimensional linear consolidation of multi-layered soils under constant loading. The compression or rebounding of each soil layer can be judged by the effective stress of the layer. When the effective stress is larger than that in the last time interval, the soil layer is compressed, and when it is smaller, the soil layer rebounds. Thus, appropriate compressibility can be chosen and the consolidation of the layered system can be analyzed by the available analytical linear consolidation theory. Based on the semi-analytical method, a computer program was developed and the behavior of one-dimensional consolidation of soil with varied compressibility under cyclic loading was investigated, and compared with the available consolidation theory which takes no consideration of varied compressibility of soil under cyclic loading. The results showed that by taking the variable compressibility into account, the rate of consolidation of soil was greater than the one predicted by conventional consolidation theory.
基金funded by the National Key Technologies R&D Program during the 11th Five-Year Plan period of China (2008BADA4B08)the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-07-0345)+2 种基金the Earmarked Fund for Modern Agro-Industry Technology Research System of Ministry of Agriculture of China (nycytx-005)the collaborative project between China and the International Plant Nutrition Institute (IPNI)between China and the International Potash Institute (IPI)
文摘The investigation was carried out to study the response of winter rapeseed to potassium (K) feritlization and the critical soil available K level for current winter rapeseed production in the Yangtze River Valley (YRV) of China. A total of 132 field experiments were conducted in fields of farmers in the major winter rapeseed growing areas in YRV in 2000/2001 and 2004/2005 to 2006/2007 during growing season. Results of these field experiments showed that the average rapeseed yield increment resulting from 100 kg K ha-1 application was 358 kg ha-1, an increase over the control CK (no K) of 18.0% in 2005/2006 and 2006/2007. The average internal use efficiency (IE) of K was higher in the CK treatment (21.9 kg grain, kg-1 K uptake) than in the +K (100 kg K ha-1) treatment (17.7 kg grain, kg-1 K uptake). Winter rapeseed required 68.1 kg of K to produce 1 000 kg seed. The recovery efficiency of K fertilizer in rapeseed production averaged 39.3%. The K balance was negative, with an average net removal of 117.6 kg K ha-1 in the CK treatment annually, and 56.8 kg K ha-1 in the +K treatment. The results indicated that there was a significant negative relationship between yield increments by K application and soil available K content. Based on the relative yield of CK/+K at 90% level, the critical level of soil available K (NH4OAc-extractable K) was 135 mg kg-1.
文摘The theory of soil and water ecology is an important scientific issue related to the fundamental and overall situation of ecological environment and has important strategic significance for the protection of the earth’s ecological environment.Applying the theory of soil and water ecology to soil and water conservation can upgrade soil and water conservation from version 1.0 to version 2.0 of soil and water ecological conservation and further expand the space of soil and water conservation.The paper suggests that while giving full play to the existing strength of soil and water conservation departments,it should establish national soil and water conservation commission for coordinating multi sector forces and vigorously promoting the realization of beautiful and rich China.
基金Supported by Special Projects in Key Fields of Universities and Colleges in Guangdong Province(2021ZDZX4023)Special Fund Project for Enterprise Science and Technology Commissioners of Guangdong Province in 2020(GDKTP2020059100)+1 种基金Quality Engineering and Educational Reform Project of Zhaoqing University(zlgc 201931)Guangdong Provincial Key Laboratory of Environmental Health and Land Resource(2020B121201014)
文摘The soil heavy metals(Hg and As)in Duanzhou District of Zhaoqing City were determined by AFS200 T atomic fluorescence spectropho-tometer,and the soil environment in Duanzhou District was evaluated by several evaluation methods of soil heavy metal pollution,such as single factor index method,pollution load index method and Nemerow comprehensive pollution index method.Finally,according to the data and conclu-sions,the soil pollution situation in Duanzhou District of Zhaoqing was analyzed.The results will let more people pay attention to the changes of the environment and realize the harm of the environment,and the government can formulate a new plan conducive to the coordinated development of the environment and economy.
文摘The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu. Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts. 1990 Academic Press, Inc.
文摘The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed.
基金The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China(Grant No.41977240)the Fundamental Research Funds for the Central Universities(Grant No.B200202090).
文摘In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due to a braced excavation. The spatial variability of soil stiffness is modelled using a variogram and calibrated by high-quality experimental data. Multiple random field samples (RFSs) of soil stiffness are generated using geostatistical analysis and mapped onto a finite element mesh for stochastic analysis of excavation-induced structural responses by Monte Carlo simulation. It is found that the spatial variability of soil stiffness can be described by an exponential variogram, and the associated vertical correlation length is varied from 1.3 m to 1.6 m. It also reveals that the spatial variability of soil stiffness has a significant effect on the variations of retaining wall deflections and box culvert settlements. The ignorance of spatial variability in 3D FEM can result in an underestimation of lateral wall deflections and culvert settlements. Thus, the stochastic structural responses obtained from the 3D analysis could serve as an effective aid for probabilistic design and analysis of excavations.
文摘This study investigates the impact of soil moisture availability on dispersion-related characteristics: surface friction velocity (u* ), characteristic scales of temperature and humidity (T * and q * ), the planetary boundary layer height (h) and atmospheric stability classified by Monin-Obukhov length (L), Kazanski-Monin parameter (μ) and convective velocity scale (w* ) during daytime convective condition using a one-dimensional primitive equation with a refined soil model.
文摘The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.
基金Supported by Brilliant Youth Fund in Hebei Province
文摘On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.
文摘The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.
文摘The study aimed to evaluate soil quality using microarthopods density, diversity and soil biological quality index (QBS-ar) under different land use systems and elevation gradients. A secondary aim was to determine the relationship among soil biological and physiochemical indicators. Three groups of soil microarthropods were recognized viz. (1) Collembola (38%) (2) Acarina (33%) and (3) other microarthropods (29%). ANOVA indicated that total microarthropods densities differed significantly with land use and elevation. Population density of Acarina and other mieroarthropods were weakly significant different according to land use, while Collembola and Acarina densities showed highly significant difference with elevation. Total microarthropods, Acarina and Collembola densities were positively significantly correlated with soil organic carbon (SOC) and moisture but negatively correlated with bulk density, pH and temperature of the soil. SOC and soil moisture appeared to be good indicators of soil quality as reflected by the higher density and diversity of soil total microarthropods, Collembola, Acarina and other microarthropods group. The use of microarthropods for soil quality assessment could be effective and relatively inexpensive tool; however, further research is required to evaluate the impact of agricultural practices and elevation gradient on soil microarthropods density, diversity and species composition for the sustainable management of agro ecosystems.
文摘In carbon global cycle, the relationship between the terrestrial ecosystem and the atmosphere where there are, among others, gases that contribute to the greenhouse effect, has become object of relevant scientific interest. The content of organic matter in soil, expressed by its supplies as well as the organic matter degree of stability, are factors that can prevent the soil from acting as a drain and at the same time contribute for it to become a source of those gases. The variations in the way land is used in Brazil are factors responsible for the increase in emission of greenhouse effect gases. Based on these facts, this study was aimed to evaluate the CO2 and CH4 efflux using a gas retention chamber, and to associate these emissions to the organic carbon content in the soil. Two different areas were selected for the study, one in Tijuca Forest National Park, in a forest area, and the other at the Rio de Janeiro Federal Rural University campus. In the latter, the area was stratified in three sub areas according to the vegetation, use and water saturation degree. Samplings were performed during 8 months between 2013 and 2014.