The dynamic responses of offshore fixed platforms under ice loads are analysed in this paper. The responses calculated include the displacement and the hot spot stresses on the basis of a dynamic equation of ice-induc...The dynamic responses of offshore fixed platforms under ice loads are analysed in this paper. The responses calculated include the displacement and the hot spot stresses on the basis of a dynamic equation of ice-induced forced vibration for offshore structures. The results obtained can be cited and used for the design and operation of offshore fixed platforms against ice loading.展开更多
This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurr...This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the a-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the anthorised vessels due to human elements during operation is used to illustrate the application of the proposed model.展开更多
文摘The dynamic responses of offshore fixed platforms under ice loads are analysed in this paper. The responses calculated include the displacement and the hot spot stresses on the basis of a dynamic equation of ice-induced forced vibration for offshore structures. The results obtained can be cited and used for the design and operation of offshore fixed platforms against ice loading.
基金This project is funded bythe UK Engineering and Physical Sciences Research Council (EPSRC) under Grant Refer-ences:GR/S85504 and GR/S85498
文摘This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the a-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the anthorised vessels due to human elements during operation is used to illustrate the application of the proposed model.