Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we...Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.展开更多
Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz t...Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.展开更多
There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment ...There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.展开更多
Wireless channel characteristics have significant impacts on channel modeling,estimation,and communication performance.While the channel sparsity is an important characteristic of wireless channels.Utilizing the spars...Wireless channel characteristics have significant impacts on channel modeling,estimation,and communication performance.While the channel sparsity is an important characteristic of wireless channels.Utilizing the sparse nature of wireless channels can reduce the complexity of channel modeling and estimation,and improve system design and performance analysis.Compared with the traditional sub6 GHz channel,millimeter wave(mmWave)channel has been considered to be more sparse in existing researches.However,most research only assume that the mmWave channel is sparse,without providing quantitative analysis and evaluation.Therefore,this paper evaluates the sparsity of mmWave channels based on mmWave channel measurements.A vector network analyzer(VNA)-based mmWave channel sounder is developed to measure the channel at 28 GHz,and multi-scenario channel measurements are conducted.The Gini index,Rician𝐾factor and rootmean-square(RMS)delay spread are used to measure channel sparsity.Then,the key factors affecting mmWave channel sparsity are explored.It is found that antenna steering direction and scattering environment will affect the sparsity of mmWave channel.In addition,the impact of channel sparsity on channel eigenvalue and capacity is evaluated and analyzed.展开更多
An extensive 4 x 4 MIMO channel measurement is carried out at 6. 0-6. 4 GHz under a typical classroom environment with channel sounder based on vector network analyzer. Both LOS and NLOS scenarios are considered. The ...An extensive 4 x 4 MIMO channel measurement is carried out at 6. 0-6. 4 GHz under a typical classroom environment with channel sounder based on vector network analyzer. Both LOS and NLOS scenarios are considered. The results on path loss, delay spread and spatial correlation are presented. The measurement shows that, for corridor coverage, 2x2 MIMO is more economical than 4x4 MIMO due to high correlation. In order to identify the unique characteristics at the high frequency band, the measured channel parameters at 6. 0-6.4 GHz are compared with those at 2. 45 GHz. The comparison shows that the shortened wavelength of this higher frequency band results in a great difference of channel characteristics. Therefore, our measurement results provide new gnidance for the design and development of the system working on 6. 0-6.4 GHz band.展开更多
In the future smart transportation system, reliable vehicle-to-infrastructure(V2 I) communication is very important to ensure vehicle driving safety and to improve vehicle driving efficiency. In this paper, V2 I chann...In the future smart transportation system, reliable vehicle-to-infrastructure(V2 I) communication is very important to ensure vehicle driving safety and to improve vehicle driving efficiency. In this paper, V2 I channel measurements at 5.92 GHz are conducted in typical urban and highway scenarios.The frequency and bandwidth of transmission, as well as the deployment of the RSU(roadside unit) and the OBU(on board unit), are selected by considering the recommendation proposed by 3 GPP TR 36.885. Then,based on the measured data, the key channel characteristic parameters of the V2 I channel are extracted,including path loss, root-mean-square delay spread,stationarity distance, and Doppler spread, etc. Also,the statistical characteristics of the parameters, including time-varying and Doppler characteristics, are investigated and characterized. The work in this paper helps researchers design technology and communication systems in similar scenarios.展开更多
Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless commu...Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless communication traffic could be as high as 65 Mbps per high-speed train. The development of such HSR communications systems and standards requires, in turn, accurate models for the HSR propagation channel. This article provides an overview of ex- isting HSR channel measurement campaigns in recent years. Particularly, some important measurement and modeling results in various HSR scenarios, such as viaduct and U-shaped groove (USG), are briefly described and analyzed. In addition, we review a novel channel sounding method, which can highly improve the measurement efficiency in HSR environment.展开更多
We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is know...We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.展开更多
Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels w...Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels with memory,i.e.,the amplitude damping channel,the phase damping channel,the bit flip channel,and the depolarizing channel.For a given initial state |Ψ>=a |00>+d|11>,it is found that the WMR operation indeed helps to protect entanglement from the above four quantum channels with memory,and the protection effect of WMR scheme is better when the coefficient a is small.For the other initial state |φ>=b|01>+c|10>,the effect of the protection scheme is the same regardless of the coefficient b and the WMR operation can protect entanglement in the amplitude damping channel with memory.Moreover,the protection of entanglement in quantum noise channels without memory in contrast to the results of the channels with memory is more effective.For |Ψ> or |φ>,we also find that the memory parameters play a significant role in the suppression of entanglement sudden death and the initial entanglement can be drastically amplified.Another more important result is that the relationship between the concurrence,the memory parameter,the weak measurement strength,and quantum measurement reversal strength is found through calculation and discussion.It provides a strong basis for the system to maintain maximum entanglement in the nosie channel.展开更多
With the advantage of programmable electromagnetic properties,Reconfigurable Intelligent Surfaces(RISs)havedrawn wide attention from both industry and academia.RIS-assisted communication systems can promote hugewirele...With the advantage of programmable electromagnetic properties,Reconfigurable Intelligent Surfaces(RISs)havedrawn wide attention from both industry and academia.RIS-assisted communication systems can promote hugewireless channel quality improvement and remarkable coverage enhancement.This paper proposes generalpathloss model,radiation pattern and mirror beam effect of 1-bit RIS at sub-6 GHz band.Field trails have beencarried out in outdoor and indoor deployment scenarios.The proposed model is validated through extensivesimulations and field-trial measurements.In addition,an optimized RIS phase-shit design process for the mirrorbeam elimination is proposed and validated with simulations.The proposed theoretical model and measurementresults can promote future research and application in RIS-assisted communications.展开更多
The fifth generation(5G)communication has been a hotspot of research in recent years,and both research institutions and industrial enterprises put a lot of interests in 5G communications at some new frequency bands.In...The fifth generation(5G)communication has been a hotspot of research in recent years,and both research institutions and industrial enterprises put a lot of interests in 5G communications at some new frequency bands.In this paper,we investigate the radio channels of 5G systems below 6 GHz according to the 5G communication requirements and scenarios.Channel measurements were conducted on the campus of Beijing Jiaotong University,China at two key optional frequency bands below 6 GHz.By using the measured data,we analyzed key channel parameters at 460 MHz and 3.5 GHz,such as power delay profile,path loss exponent,shadow fading,and delay spread.The results are helpful for the 5G communication system design.展开更多
Sub-terahertz(Sub-THz),defined as the frequency bands in 100-300 GHz,is promising for future generation communications and sensing applications.Accurate channel measurement and modeling are essential for development a...Sub-terahertz(Sub-THz),defined as the frequency bands in 100-300 GHz,is promising for future generation communications and sensing applications.Accurate channel measurement and modeling are essential for development and performance evaluation of the future communication systems.Accurate channel modeling relies on realistic channel data,which should be collected by high-fidelity channel sounder.This paper presents the measurement-based channel characterization in a large indoor scenario at 299-301 GHz.We firstly review the state-of-the-art channel measurements at sub-THz frequency bands.We then presented a VNA-based channel sounder for long-range measurements,which uses the radio-overfiber techniques.Channel measurements using this channel sounder are conducted in a large hall scenario.Based on the measurement data,we calculated and analyzed key propagation channel parameters,e.g.,path loss,delay spread,and angular spread.The results are also analyzed both in the line-of-sight(Lo S)and noneLo S(NLo S)cases.The large delay components in the measurements demonstrate the possibility of the longrange channel measurement campaign at 300 GHz.展开更多
Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense codi...Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.展开更多
This paper presented a novel millimeterwave channel measurement platform for the 6G intelligent railway.This platform used phased array antenna with 64 elements and can support instant bandwidth up to 1 GHz.Combined w...This paper presented a novel millimeterwave channel measurement platform for the 6G intelligent railway.This platform used phased array antenna with 64 elements and can support instant bandwidth up to 1 GHz.Combined with improved multi-tone sounding signals,the platform can enhance dynamic measurement capability in high-speed railway scenarios.We performed calibration works about frequency flatness,frequency offset and proved platform reliability with channel emulator based closed-loop verification.We also carried out field trials in high-speed railway carriage scenarios.Based on measurement results,we extracted channel characteristic parameters of path loss,power delay profile and delay spread to further verify the field measurement performance of the platform.展开更多
As an important part of sixth generation(6G)integrated space-air-ground-sea networks,unmanned aerial vehicle(UAV)communications have aroused great attention and one of its typical application scenarios is the hilly en...As an important part of sixth generation(6G)integrated space-air-ground-sea networks,unmanned aerial vehicle(UAV)communications have aroused great attention and one of its typical application scenarios is the hilly environments.The related UAV air-ground(AG)channel characteristics analysis is crucial for system design and network evaluation of future UAV communications in hilly scenarios.In this paper,a recently conducted channel measurements campaign in a hilly scenario is presented,which is conducted at the center frequencies of 2.585 GHz and 3.5 GHz for different flight trajectories.Based on the measurement data,some key channel characteristics are analyzed,including path loss(PL),shadow fading(SF),Rician K-factor,root mean square(RMS)delay spread(DS),and temporal auto-correlation function(ACF).Finally,the comparison of typical channel characteristics under circular and straight trajectories is given.The related results can provide a theoretical reference for constructing future UAV communication system in hilly scenarios.展开更多
A propagation measurement campaign was performed at the 10 th floor corridor of Xingjian Building,Shanghai University,China.The channel was sounded by pseudo noise( PN) sequence at carrier frequencies of 400-and 2600-...A propagation measurement campaign was performed at the 10 th floor corridor of Xingjian Building,Shanghai University,China.The channel was sounded by pseudo noise( PN) sequence at carrier frequencies of 400-and 2600-MHz respectively.In order to obtain large scale and small scale propagation characteristics in the corridor,the receiver was moved along the corridor every 1.02 meter to record the impulse response.More than 280,000 impulse responses were recorded in the campaign.This work first describes the principle of the measurement,and then how the recorded raw data are processed.The results show that path loss exponent is related to frequency.The relationship between the root-mean squared( RMS) delay spread and the T-R separation distance is analyzed.The RMS delay spread and the mean excess delay spread against path loss are also given,which explain why the 2600 MHz RMS delay spread is larger than that of 400 MHz.展开更多
Compared with conventional multiple-input multiple-output(MIMO),massive MIMO system with tens or even hundreds of antennas is able to give better performance in capacity and spectral efficiency,which is a promising te...Compared with conventional multiple-input multiple-output(MIMO),massive MIMO system with tens or even hundreds of antennas is able to give better performance in capacity and spectral efficiency,which is a promising technology for 5G.Considering this,massive MIMO has become a hot research topic all over the world.In this paper,the channel measurements and models of massive MIMO in recent years are summarized.Besides,the related 256 antenna elements with 200 MHz bandwidth at 3.5 GHz proposed by our team,the verification of rationality of the measurement method,and the spatial evolution of clusters in mobile scenario are provided.展开更多
The galvanic-coupled intrabody communication(GCIBC)uses the human body as the channel for data transmission.The signal flow through different paths within different measure-ment schemes,resulting in distinct deviation...The galvanic-coupled intrabody communication(GCIBC)uses the human body as the channel for data transmission.The signal flow through different paths within different measure-ment schemes,resulting in distinct deviations in the experimental results.This method completely uses human body channel to transmit low-power signals,and has good anti-interference perform-ance.However,for a long time,the channel research of GCIBC has not determined a set of recog-nized and accurate measurement methods and standards.However,few researcher analyze the dif-ferences and principles between different measurement methods.This paper aims at three com-monly used measurement methods.Abstract the equivalent schematic diagrams of three measure-ment schemes:direct measurement,using high-precision differential probe and using balun.The sig-nal return paths generated by three measurement methods are analyzed,the impedance matching and energy transmission efficiency are compared.According to the analysis,the empirical expres-sions in different cases are listed.The mechanism between the channel measurement results gener-ated by the set experimental configuration and the comparison experiment is clarified.The compar-ison experiment with complete floating measurement is carried out as a reference to verify the pro-posed opinion.The measurement error caused by different experimental configurations is verified.This study can provide a reference opinions for the experimental error analysis of GCIBC research in the future,and provide suggestions for the selection of experimental configuration.展开更多
while cellular networks have continuously evolved in recent years, the industry has clearly seen unprecedented challenges to meet the exponentially growing expectations in the near future. The 5G system is facing gran...while cellular networks have continuously evolved in recent years, the industry has clearly seen unprecedented challenges to meet the exponentially growing expectations in the near future. The 5G system is facing grand challenges such as the everincreasing traffic volumes and remarkably diversified services connecting humans and machines alike.As a result, the future network has to deliver massively increased capacity, greater flexibility, incorporated computing capability,support of significantly extended battery lifetime, and accommodation of vary?ing payloads with fast setup and low latency, etc. In particular, as 5G requires more spectrum resource, higher frequency bands are desirable. Nowadays, millimeter wave has been widely accepted as one of the main communication bands for 5G.展开更多
As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. Thi...As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. This paper aims to emulate realistic multi-Path propagation channels in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading, inside an anechoic chamber, for antenna diversity measurements. In this purpose, a practical multi-probe anechoic chamber measurement system (MPAC) with 24 probe antennas (SATIMO SG24) has been used. However, the actual configuration of this system is not able to reproduce realistic channels. Therefore, a new method based on the control of the SG24 probes has been developed. At first time, this method has been validated numerically through the comparison of simulated and analytical AoA probability density distributions. At the second time, the performance of an antenna diversity system inside the SG24 has been performed in terms of the correlation coefficient and diversity gain (DG) using an antenna reference system. Simulated and measurements results have shown a good agreement.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Natural Science Foundation of China(No.62201086,92167202,62201087,62101069)BUPT-CMCC Joint Innovation Center,and State Key Laboratory of IPOC(BUPT)(No.IPOC2023ZT02),China。
文摘Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Key R&D Program of China(No.2020YFB1805002)the Key Project of State Key Lab of Networking and Switching Technology(No.NST20180105).
文摘Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.
基金supported in part by the NSFC project under grant No.61132003the Fundamental Research Funds for the Central Universities(2013JBZ002)the Ph.D.Program Foundation of Ministry of Education of China under grant No.20120009130002
文摘There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.
基金supported by National Key R&D Program of China under Grant 2022YFF0608103the National Natural Science Foundation of China under Grant 61922012+1 种基金the Science and Technology Program of State Administration for Market Regulation under Grant 2021MK155the Fundamental Funds of National Institute of Metrology under Grant AKYZD2116-2.
文摘Wireless channel characteristics have significant impacts on channel modeling,estimation,and communication performance.While the channel sparsity is an important characteristic of wireless channels.Utilizing the sparse nature of wireless channels can reduce the complexity of channel modeling and estimation,and improve system design and performance analysis.Compared with the traditional sub6 GHz channel,millimeter wave(mmWave)channel has been considered to be more sparse in existing researches.However,most research only assume that the mmWave channel is sparse,without providing quantitative analysis and evaluation.Therefore,this paper evaluates the sparsity of mmWave channels based on mmWave channel measurements.A vector network analyzer(VNA)-based mmWave channel sounder is developed to measure the channel at 28 GHz,and multi-scenario channel measurements are conducted.The Gini index,Rician𝐾factor and rootmean-square(RMS)delay spread are used to measure channel sparsity.Then,the key factors affecting mmWave channel sparsity are explored.It is found that antenna steering direction and scattering environment will affect the sparsity of mmWave channel.In addition,the impact of channel sparsity on channel eigenvalue and capacity is evaluated and analyzed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61371101)the Shenzhen Biological,Internet,New Energy and New Materials Industry Development Project(Grant No.JC201104210030A)+2 种基金the Science and Technology Basic Research Project of Shenzhen(Grant No.JC200903120174A)the Research Innovation Fund Project of HIT(Grant No.HIT.NSFIR.2010133)the WINDOW-Towards Pervasive Indoor Wireless Networks,and the European Commission under its 7th Framework Program(Grant No.318992)
文摘An extensive 4 x 4 MIMO channel measurement is carried out at 6. 0-6. 4 GHz under a typical classroom environment with channel sounder based on vector network analyzer. Both LOS and NLOS scenarios are considered. The results on path loss, delay spread and spatial correlation are presented. The measurement shows that, for corridor coverage, 2x2 MIMO is more economical than 4x4 MIMO due to high correlation. In order to identify the unique characteristics at the high frequency band, the measured channel parameters at 6. 0-6.4 GHz are compared with those at 2. 45 GHz. The comparison shows that the shortened wavelength of this higher frequency band results in a great difference of channel characteristics. Therefore, our measurement results provide new gnidance for the design and development of the system working on 6. 0-6.4 GHz band.
基金supported by National Natural Science Foundation of China (NSFC) under grant of 61931001。
文摘In the future smart transportation system, reliable vehicle-to-infrastructure(V2 I) communication is very important to ensure vehicle driving safety and to improve vehicle driving efficiency. In this paper, V2 I channel measurements at 5.92 GHz are conducted in typical urban and highway scenarios.The frequency and bandwidth of transmission, as well as the deployment of the RSU(roadside unit) and the OBU(on board unit), are selected by considering the recommendation proposed by 3 GPP TR 36.885. Then,based on the measured data, the key channel characteristic parameters of the V2 I channel are extracted,including path loss, root-mean-square delay spread,stationarity distance, and Doppler spread, etc. Also,the statistical characteristics of the parameters, including time-varying and Doppler characteristics, are investigated and characterized. The work in this paper helps researchers design technology and communication systems in similar scenarios.
基金supported in part by the National Natural Science Foundations(Nos.61032002 and 61102050)the National Science and Technology Major Project(No.2011ZX03001-007-01)+1 种基金the Beijing Natural Science Foundation(No.4122061)the Fundamental Research Funds for the Central Universities(No.2012YJS005)
文摘Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless communication traffic could be as high as 65 Mbps per high-speed train. The development of such HSR communications systems and standards requires, in turn, accurate models for the HSR propagation channel. This article provides an overview of ex- isting HSR channel measurement campaigns in recent years. Particularly, some important measurement and modeling results in various HSR scenarios, such as viaduct and U-shaped groove (USG), are briefly described and analyzed. In addition, we review a novel channel sounding method, which can highly improve the measurement efficiency in HSR environment.
基金Project supported by Indian Institute of Engineering Science and Technology, Shibpur, India
文摘We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2017MF040).
文摘Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels with memory,i.e.,the amplitude damping channel,the phase damping channel,the bit flip channel,and the depolarizing channel.For a given initial state |Ψ>=a |00>+d|11>,it is found that the WMR operation indeed helps to protect entanglement from the above four quantum channels with memory,and the protection effect of WMR scheme is better when the coefficient a is small.For the other initial state |φ>=b|01>+c|10>,the effect of the protection scheme is the same regardless of the coefficient b and the WMR operation can protect entanglement in the amplitude damping channel with memory.Moreover,the protection of entanglement in quantum noise channels without memory in contrast to the results of the channels with memory is more effective.For |Ψ> or |φ>,we also find that the memory parameters play a significant role in the suppression of entanglement sudden death and the initial entanglement can be drastically amplified.Another more important result is that the relationship between the concurrence,the memory parameter,the weak measurement strength,and quantum measurement reversal strength is found through calculation and discussion.It provides a strong basis for the system to maintain maximum entanglement in the nosie channel.
基金supported in part by the Fundamental Research Funds for the Central Universities(2022JBZY018)in part by the National Science Foundation of China(NSFC)for General Program under Grant 62171021+1 种基金in part by the Project of China State Railway Group under Grant P2020G004,SY2021G001in part by Basic Research Project of Jiangsu Province Frontier Leading Technology under Grant BK20212002.
文摘With the advantage of programmable electromagnetic properties,Reconfigurable Intelligent Surfaces(RISs)havedrawn wide attention from both industry and academia.RIS-assisted communication systems can promote hugewireless channel quality improvement and remarkable coverage enhancement.This paper proposes generalpathloss model,radiation pattern and mirror beam effect of 1-bit RIS at sub-6 GHz band.Field trails have beencarried out in outdoor and indoor deployment scenarios.The proposed model is validated through extensivesimulations and field-trial measurements.In addition,an optimized RIS phase-shit design process for the mirrorbeam elimination is proposed and validated with simulations.The proposed theoretical model and measurementresults can promote future research and application in RIS-assisted communications.
基金supported by the National Natural Science Foundation of China under Grant 61501020the State Key Laboratory of Rail Traffic Control and Safety under Grant RCS2016ZJ005+5 种基金the China Postdoctoral Science Foundation under Grant 2016M591355the Fundamental Research Funds for the Central Universities(No.2016JBZ006)the Special Project of Cultivation and Development of Science and Technology Innovation Base in 2015the National Natural Science Foundation of China under Grant U1334202the Natural Science Base Research Plan in Shanxi Province of China under Grant 2015JM6320the Key Project from Beijing science and Technology Commission under Grant D151100000115004.
文摘The fifth generation(5G)communication has been a hotspot of research in recent years,and both research institutions and industrial enterprises put a lot of interests in 5G communications at some new frequency bands.In this paper,we investigate the radio channels of 5G systems below 6 GHz according to the 5G communication requirements and scenarios.Channel measurements were conducted on the campus of Beijing Jiaotong University,China at two key optional frequency bands below 6 GHz.By using the measured data,we analyzed key channel parameters at 460 MHz and 3.5 GHz,such as power delay profile,path loss exponent,shadow fading,and delay spread.The results are helpful for the 5G communication system design.
基金supported by the EURAMET European Partnership on Metrology(EPM),under 21NRM03 Metrology for Emerging Wireless Standards(MEWS)projectfunding from the EPM,co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States。
文摘Sub-terahertz(Sub-THz),defined as the frequency bands in 100-300 GHz,is promising for future generation communications and sensing applications.Accurate channel measurement and modeling are essential for development and performance evaluation of the future communication systems.Accurate channel modeling relies on realistic channel data,which should be collected by high-fidelity channel sounder.This paper presents the measurement-based channel characterization in a large indoor scenario at 299-301 GHz.We firstly review the state-of-the-art channel measurements at sub-THz frequency bands.We then presented a VNA-based channel sounder for long-range measurements,which uses the radio-overfiber techniques.Channel measurements using this channel sounder are conducted in a large hall scenario.Based on the measurement data,we calculated and analyzed key propagation channel parameters,e.g.,path loss,delay spread,and angular spread.The results are also analyzed both in the line-of-sight(Lo S)and noneLo S(NLo S)cases.The large delay components in the measurements demonstrate the possibility of the longrange channel measurement campaign at 300 GHz.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074027).
文摘Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004,2022JBZY018 and 2022JBXT001in part by the Basic Research Project of Jiangsu Province Frontier Leading Technology under Grant BK20212002.
文摘This paper presented a novel millimeterwave channel measurement platform for the 6G intelligent railway.This platform used phased array antenna with 64 elements and can support instant bandwidth up to 1 GHz.Combined with improved multi-tone sounding signals,the platform can enhance dynamic measurement capability in high-speed railway scenarios.We performed calibration works about frequency flatness,frequency offset and proved platform reliability with channel emulator based closed-loop verification.We also carried out field trials in high-speed railway carriage scenarios.Based on measurement results,we extracted channel characteristic parameters of path loss,power delay profile and delay spread to further verify the field measurement performance of the platform.
基金supported by the National Key R&D Program of China under Grant 2021YFB1407001the National Natural Science Foundation of China(NSFC)under Grants 62001269 and 61960206006+5 种基金the Fundamental Research Funds of Shandong University under Grant 2020GN032the Future Plan Program for Young Scholars of Shandong Universitythe State Key Laboratory of Rail Traffic Control and Safety(Contract No.RCS2022K009)Beijing Jiaotong University,the Taishan Scholar Program of Shandong Province,the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)under Grants BE2022067,BE2022067-1,and BE2022067-3the High Level Innovation and Entrepreneurial Talent Introduction Program in Jiangsuthe EU H2020 RISE TESTBED2 project under Grant 872172.
文摘As an important part of sixth generation(6G)integrated space-air-ground-sea networks,unmanned aerial vehicle(UAV)communications have aroused great attention and one of its typical application scenarios is the hilly environments.The related UAV air-ground(AG)channel characteristics analysis is crucial for system design and network evaluation of future UAV communications in hilly scenarios.In this paper,a recently conducted channel measurements campaign in a hilly scenario is presented,which is conducted at the center frequencies of 2.585 GHz and 3.5 GHz for different flight trajectories.Based on the measurement data,some key channel characteristics are analyzed,including path loss(PL),shadow fading(SF),Rician K-factor,root mean square(RMS)delay spread(DS),and temporal auto-correlation function(ACF).Finally,the comparison of typical channel characteristics under circular and straight trajectories is given.The related results can provide a theoretical reference for constructing future UAV communication system in hilly scenarios.
基金Supported by the National Natural Science Foundation of China(No.61132003,61171086,61501186)Shanghai Natural Science Foundation under Grant(No.14ZR1415100)
文摘A propagation measurement campaign was performed at the 10 th floor corridor of Xingjian Building,Shanghai University,China.The channel was sounded by pseudo noise( PN) sequence at carrier frequencies of 400-and 2600-MHz respectively.In order to obtain large scale and small scale propagation characteristics in the corridor,the receiver was moved along the corridor every 1.02 meter to record the impulse response.More than 280,000 impulse responses were recorded in the campaign.This work first describes the principle of the measurement,and then how the recorded raw data are processed.The results show that path loss exponent is related to frequency.The relationship between the root-mean squared( RMS) delay spread and the T-R separation distance is analyzed.The RMS delay spread and the mean excess delay spread against path loss are also given,which explain why the 2600 MHz RMS delay spread is larger than that of 400 MHz.
基金supported in part by National Natural Science Foundation of China(61322110,6141101115)in part by National Science and Technology Major Project of the Ministry of Science and Technology(2015ZX03002008)+2 种基金in part by National Key Technology Research and Development Program(2012BAF14B01)“863”Program(2015AA01A703)Doctoral Fund of Ministry of Education(201300051100013).
文摘Compared with conventional multiple-input multiple-output(MIMO),massive MIMO system with tens or even hundreds of antennas is able to give better performance in capacity and spectral efficiency,which is a promising technology for 5G.Considering this,massive MIMO has become a hot research topic all over the world.In this paper,the channel measurements and models of massive MIMO in recent years are summarized.Besides,the related 256 antenna elements with 200 MHz bandwidth at 3.5 GHz proposed by our team,the verification of rationality of the measurement method,and the spatial evolution of clusters in mobile scenario are provided.
基金the National Natural Science Found-ation of China(No.U1505251)the International Coopera-tion Project in Fujian Province(No.2021I0005)Project of Education Department of Fujian Province(No.JAT200051).
文摘The galvanic-coupled intrabody communication(GCIBC)uses the human body as the channel for data transmission.The signal flow through different paths within different measure-ment schemes,resulting in distinct deviations in the experimental results.This method completely uses human body channel to transmit low-power signals,and has good anti-interference perform-ance.However,for a long time,the channel research of GCIBC has not determined a set of recog-nized and accurate measurement methods and standards.However,few researcher analyze the dif-ferences and principles between different measurement methods.This paper aims at three com-monly used measurement methods.Abstract the equivalent schematic diagrams of three measure-ment schemes:direct measurement,using high-precision differential probe and using balun.The sig-nal return paths generated by three measurement methods are analyzed,the impedance matching and energy transmission efficiency are compared.According to the analysis,the empirical expres-sions in different cases are listed.The mechanism between the channel measurement results gener-ated by the set experimental configuration and the comparison experiment is clarified.The compar-ison experiment with complete floating measurement is carried out as a reference to verify the pro-posed opinion.The measurement error caused by different experimental configurations is verified.This study can provide a reference opinions for the experimental error analysis of GCIBC research in the future,and provide suggestions for the selection of experimental configuration.
文摘while cellular networks have continuously evolved in recent years, the industry has clearly seen unprecedented challenges to meet the exponentially growing expectations in the near future. The 5G system is facing grand challenges such as the everincreasing traffic volumes and remarkably diversified services connecting humans and machines alike.As a result, the future network has to deliver massively increased capacity, greater flexibility, incorporated computing capability,support of significantly extended battery lifetime, and accommodation of vary?ing payloads with fast setup and low latency, etc. In particular, as 5G requires more spectrum resource, higher frequency bands are desirable. Nowadays, millimeter wave has been widely accepted as one of the main communication bands for 5G.
文摘As antennas are inherently included recommended in Over-The-Air (OTA) testing, it is important to also consider realistic channel models for the multiple-input multiple-output (MIMO) device performance evaluation. This paper aims to emulate realistic multi-Path propagation channels in terms of angles of arrivals (AoA) and cross-polarization ratio (XPR) with Rayleigh fading, inside an anechoic chamber, for antenna diversity measurements. In this purpose, a practical multi-probe anechoic chamber measurement system (MPAC) with 24 probe antennas (SATIMO SG24) has been used. However, the actual configuration of this system is not able to reproduce realistic channels. Therefore, a new method based on the control of the SG24 probes has been developed. At first time, this method has been validated numerically through the comparison of simulated and analytical AoA probability density distributions. At the second time, the performance of an antenna diversity system inside the SG24 has been performed in terms of the correlation coefficient and diversity gain (DG) using an antenna reference system. Simulated and measurements results have shown a good agreement.