The purpose of this study is to develop an integrated framework for capacity analysis to address the influence of systematic hazardous factors on the haulage fleet nominal capacity.The proposed model was made to captu...The purpose of this study is to develop an integrated framework for capacity analysis to address the influence of systematic hazardous factors on the haulage fleet nominal capacity.The proposed model was made to capture unexpected risks for mining equipment based upon data-driven method considering different scenarios.Probabilistic risk assessment(PRA)was employed to quantify the loss of production capacity by focusing on severity of failure incidents and maintainability measurements.Discrete-event simulation was configured to characterize the nominal capacity for mining operation.Accordingly,the system capacity was analyzed through the comparison of nominal and actual capacity.A case study was completed to validate the research methodology.The past operation and maintenance field data were collected for shovel operation.The discrete-event simulation was developed to estimate the rate of shovel nominal capacity.Then,the effects of undesirable scenarios were assessed by developing the PRA approach.The research results provide significant insights into how to enhance the production capacity in mines.The analyst gets a well judgment for the crucial elements dealing with high risk levels.A holistic maintenance plan can be developed to mitigate and control the losses.展开更多
Manufacturing equipment takes the task of operation and directly effects on the manufacturing process. One single Key Performance Indicator (KPI) is mainly employed to evaluate equipment in most studies, neither int...Manufacturing equipment takes the task of operation and directly effects on the manufacturing process. One single Key Performance Indicator (KPI) is mainly employed to evaluate equipment in most studies, neither integrating the KPIs into a completed evaluation system nor considering the impact and conflict among KPIs. In this paper, a KPI evaluation architecture is presented to define and analyze KPIs, and then a common structure for KPI to obtain the KPI set of manufacturing equipment is introduced. An available multi-KPl coordination model is proposed to discern and balance the relationship among multi-KPl. Finally, a case study is introduced to illustrate the applicability of the coordination model by using multi-objective optimization strategy and an efficient solution is obtained.展开更多
Large numbers of basic transceiver stations,where the telecommunication room is one of the main components,comprise an important part of the telecommunication system.After earthquakes,considerable economic loss from t...Large numbers of basic transceiver stations,where the telecommunication room is one of the main components,comprise an important part of the telecommunication system.After earthquakes,considerable economic loss from telecommunication systems is often associated with seismic damage and functional loss of the telecommunication room.However,research related to this has been limited.In this study,shaking table tests were conducted for a full-scale typical telecommunication room,including a light-steel house and the necessary communication and power supply equipment.The tests not only focused on the seismic damage to all the structures but also considered the functions of the communication and power supply of the equipment.The interactions between these facilities and their effects on communication function were also investigated.Compared with the damage to structures,the interruption of the power supply due to earthquakes is a weak link.Finally,the damage indexes,together with their threshold values of different damage states for the communication and power supply equipment,were derived from the test results.The results of this research can contribute to the literature gaps regarding seismic performance studies of telecommunication rooms,and can serve as a valuable reference for future research on its seismic fragility and economic losses evaluation.展开更多
Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-s...Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-sensitive systems or equipment.Meanwhile,as the isolation layer’s displacement grows,the stiffness and frequency of traditional rolling and sliding isolation bearings increases,potentially causing self-centering and resonance concerns.As a result,a new conical pendulum bearing has been selected for acceleration-sensitive equipment to increase self-centering capacity,and additional viscous dampers are incorporated to enhance system damping.Moreover,the theoretical formula for conical pendulum bearings is supplied to analyze the device’s dynamic parameters,and shake table experiments are used to determine the proposed device’s isolation efficiency under various conditions.According to the test results,the newly proposed devices have remarkable isolation performance in terms of minimizing both acceleration and displacement responses.Finally,a numerical model of the isolation system is provided for further research,and the accuracy is demonstrated by the aforementioned experiments.展开更多
A theoretical calculation method of off-design performance is developed for an axial flow fan of oil cooling system in helicopter,including calculation of aerodynamic parameters and performance parameters.When calcula...A theoretical calculation method of off-design performance is developed for an axial flow fan of oil cooling system in helicopter,including calculation of aerodynamic parameters and performance parameters.When calculating inlet shock loss,the shock loss coefficient is obtained by comparing results of theoretical calculation,experimental and numerical calculation.The theoretical results and numerical results show that all air velocity components increase from hub to shroud in main flow area at rated condition.Tip leakage vortex moves downstream as flow rate increases.When flow rate decreases,Re decreases,and boundary layer thickness from hub to shroud area all increases gradually.Tip leakage vortex moves upstream,and secondary loss increases.Low speed area in the passage is widened along with high speed area moving to hub area,influenced by boundary layer separation.Consequently wake area and jet area at fan outlet are both larger than rated condition.Therefore optimization design for off-design performance of the fan is required on aerodynamic parameters influencing fan loss.A reliable method is supplied for estimating altitude performance of lubricating system in helicopter.展开更多
Building cooling, heating and power (BCHP) systems should play an important role in achieving the goals of energy efficient use and environment protection in China. It will make big sense when this type of system show...Building cooling, heating and power (BCHP) systems should play an important role in achieving the goals of energy efficient use and environment protection in China. It will make big sense when this type of system shows a good performance energetically and economically. An on-site BCHP system being the first in the country was installed and put to use five years ago. As the first step to evaluate the project, computations were made based on thermodynamic and thermoeconomic theories to evaluate the system on full load and off-design conditions in summer. Discussion and analyses are made mainly in terms of exergetic efficiency and costs of unit amount of useful exergy produced in this paper.展开更多
Compressed air is an integral utility part of industrial utility systems. Any improvement in compressed air system will lead to reduction in utility cost. The effectiveness of utilization side of compressed air is usu...Compressed air is an integral utility part of industrial utility systems. Any improvement in compressed air system will lead to reduction in utility cost. The effectiveness of utilization side of compressed air is usually dependent upon operator’s discretion. There are no performance testing methods available for testing existing end use equipments. A test apparatus for estimation of compressed air flow based on measurement of pressure reduction in a fixed volume cylinder in a given time is developed. The test apparatus is easy to build and simple to operate in an industrial environment. This can be used for measuring performance of any pneumatic end-use equipment and for benchmarking the performance. The test apparatus was used in a foundry for quantifying the performance of the old and new blow guns.展开更多
Using the efficient,space-saving,and flexible supercritical carbon dioxide(sCO_(2)) Brayton cycle is a promising approach for improving the performance of nuclear-powered ships.The purpose of this paper is to design a...Using the efficient,space-saving,and flexible supercritical carbon dioxide(sCO_(2)) Brayton cycle is a promising approach for improving the performance of nuclear-powered ships.The purpose of this paper is to design and compare sCO_(2) cycle power systems suitable for nuclear-powered ships.Considering the characteristics of nuclear-powered ships,this paper uses different indicators to comprehensively evaluate the efficiency,cost,volume,and partial load performance of several nuclear-powered sCO_(2) cycles.Four load-following strategies are also designed and compared.The results show that the partial cooling cycle is most suitable for nuclear-powered ships because it offers both high thermal efficiency and low volume and cost,and can maintain relatively high thermal efficiency at partial loads.Additionally,the new load-following strategy that adjusts the turbine speed can keep the compressor away from the surge line,making the cycle more flexible and efficient compared to traditional inventory and turbine bypass strategies.展开更多
The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the conce...The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the concentrated solar power plant with thermal energy storage is usually located in drought area and used to provide a dispatchable power output,the S-CO_(2) Brayton cycle has to operate under fluctuating ambient temperature and diverse power demand scenarios.In addition,the cycle design condition will directly affect the off-design performance.In this work,the combined effects of design condition,and distributions of ambient temperature and power demand on the cycle operating performance are analyzed,and the off-design performance maps are proposed for the first time.A cycle design method with feedback mechanism of operating performance under varied ambient temperature and power demand is introduced innovatively.Results show that the low design value of compressor inlet temperature is not conductive to efficient operation under low loads and sufficient output under high ambient temperatures.The average yearly efficiency is most affected by the average power demand,while the load cover factor is significantly influenced by the average ambient temperature.With multi-objective optimization,the optimal solution of designed compressor inlet temperature is close to the minimum value of35℃ in Delingha with low ambient temperature,while reaches 44.15℃ in Daggett under the scenario of high ambient temperature,low average power demand,long duration and large value of peak load during the peak temperature period.If the cycle designed with compressor inlet temperature of 35℃ instead of 44.15℃ in Daggett under light industry power demand,the reduction of load cover factor will reach 0.027,but the average yearly efficiency can barely be improved.展开更多
文摘The purpose of this study is to develop an integrated framework for capacity analysis to address the influence of systematic hazardous factors on the haulage fleet nominal capacity.The proposed model was made to capture unexpected risks for mining equipment based upon data-driven method considering different scenarios.Probabilistic risk assessment(PRA)was employed to quantify the loss of production capacity by focusing on severity of failure incidents and maintainability measurements.Discrete-event simulation was configured to characterize the nominal capacity for mining operation.Accordingly,the system capacity was analyzed through the comparison of nominal and actual capacity.A case study was completed to validate the research methodology.The past operation and maintenance field data were collected for shovel operation.The discrete-event simulation was developed to estimate the rate of shovel nominal capacity.Then,the effects of undesirable scenarios were assessed by developing the PRA approach.The research results provide significant insights into how to enhance the production capacity in mines.The analyst gets a well judgment for the crucial elements dealing with high risk levels.A holistic maintenance plan can be developed to mitigate and control the losses.
基金Supported by the National Natural Science Foundation of China(61134007,61320106009)
文摘Manufacturing equipment takes the task of operation and directly effects on the manufacturing process. One single Key Performance Indicator (KPI) is mainly employed to evaluate equipment in most studies, neither integrating the KPIs into a completed evaluation system nor considering the impact and conflict among KPIs. In this paper, a KPI evaluation architecture is presented to define and analyze KPIs, and then a common structure for KPI to obtain the KPI set of manufacturing equipment is introduced. An available multi-KPl coordination model is proposed to discern and balance the relationship among multi-KPl. Finally, a case study is introduced to illustrate the applicability of the coordination model by using multi-objective optimization strategy and an efficient solution is obtained.
基金Key Project of the Key Laboratory of Earthquake Engineering and Engineering Vibration,China Earthquake Administration under Grant Nos.2020EEEVL0502 and 2019EEEVL0304。
文摘Large numbers of basic transceiver stations,where the telecommunication room is one of the main components,comprise an important part of the telecommunication system.After earthquakes,considerable economic loss from telecommunication systems is often associated with seismic damage and functional loss of the telecommunication room.However,research related to this has been limited.In this study,shaking table tests were conducted for a full-scale typical telecommunication room,including a light-steel house and the necessary communication and power supply equipment.The tests not only focused on the seismic damage to all the structures but also considered the functions of the communication and power supply of the equipment.The interactions between these facilities and their effects on communication function were also investigated.Compared with the damage to structures,the interruption of the power supply due to earthquakes is a weak link.Finally,the damage indexes,together with their threshold values of different damage states for the communication and power supply equipment,were derived from the test results.The results of this research can contribute to the literature gaps regarding seismic performance studies of telecommunication rooms,and can serve as a valuable reference for future research on its seismic fragility and economic losses evaluation.
基金Scientific Research Fund of Institute of Engineering Mechanics,CEA under Grant No.2019A03Scientific Research Fund of Institute of Engineering Mechanics,CEA under Grant No.2021D12National Key R&D Program of China under No.2018YFC1504404。
文摘Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-sensitive systems or equipment.Meanwhile,as the isolation layer’s displacement grows,the stiffness and frequency of traditional rolling and sliding isolation bearings increases,potentially causing self-centering and resonance concerns.As a result,a new conical pendulum bearing has been selected for acceleration-sensitive equipment to increase self-centering capacity,and additional viscous dampers are incorporated to enhance system damping.Moreover,the theoretical formula for conical pendulum bearings is supplied to analyze the device’s dynamic parameters,and shake table experiments are used to determine the proposed device’s isolation efficiency under various conditions.According to the test results,the newly proposed devices have remarkable isolation performance in terms of minimizing both acceleration and displacement responses.Finally,a numerical model of the isolation system is provided for further research,and the accuracy is demonstrated by the aforementioned experiments.
基金National Aviation Science Foundation of China (No. 20080451014)
文摘A theoretical calculation method of off-design performance is developed for an axial flow fan of oil cooling system in helicopter,including calculation of aerodynamic parameters and performance parameters.When calculating inlet shock loss,the shock loss coefficient is obtained by comparing results of theoretical calculation,experimental and numerical calculation.The theoretical results and numerical results show that all air velocity components increase from hub to shroud in main flow area at rated condition.Tip leakage vortex moves downstream as flow rate increases.When flow rate decreases,Re decreases,and boundary layer thickness from hub to shroud area all increases gradually.Tip leakage vortex moves upstream,and secondary loss increases.Low speed area in the passage is widened along with high speed area moving to hub area,influenced by boundary layer separation.Consequently wake area and jet area at fan outlet are both larger than rated condition.Therefore optimization design for off-design performance of the fan is required on aerodynamic parameters influencing fan loss.A reliable method is supplied for estimating altitude performance of lubricating system in helicopter.
文摘Building cooling, heating and power (BCHP) systems should play an important role in achieving the goals of energy efficient use and environment protection in China. It will make big sense when this type of system shows a good performance energetically and economically. An on-site BCHP system being the first in the country was installed and put to use five years ago. As the first step to evaluate the project, computations were made based on thermodynamic and thermoeconomic theories to evaluate the system on full load and off-design conditions in summer. Discussion and analyses are made mainly in terms of exergetic efficiency and costs of unit amount of useful exergy produced in this paper.
文摘Compressed air is an integral utility part of industrial utility systems. Any improvement in compressed air system will lead to reduction in utility cost. The effectiveness of utilization side of compressed air is usually dependent upon operator’s discretion. There are no performance testing methods available for testing existing end use equipments. A test apparatus for estimation of compressed air flow based on measurement of pressure reduction in a fixed volume cylinder in a given time is developed. The test apparatus is easy to build and simple to operate in an industrial environment. This can be used for measuring performance of any pneumatic end-use equipment and for benchmarking the performance. The test apparatus was used in a foundry for quantifying the performance of the old and new blow guns.
基金supported by the National Natural Science Foundation of China (52276150)。
文摘Using the efficient,space-saving,and flexible supercritical carbon dioxide(sCO_(2)) Brayton cycle is a promising approach for improving the performance of nuclear-powered ships.The purpose of this paper is to design and compare sCO_(2) cycle power systems suitable for nuclear-powered ships.Considering the characteristics of nuclear-powered ships,this paper uses different indicators to comprehensively evaluate the efficiency,cost,volume,and partial load performance of several nuclear-powered sCO_(2) cycles.Four load-following strategies are also designed and compared.The results show that the partial cooling cycle is most suitable for nuclear-powered ships because it offers both high thermal efficiency and low volume and cost,and can maintain relatively high thermal efficiency at partial loads.Additionally,the new load-following strategy that adjusts the turbine speed can keep the compressor away from the surge line,making the cycle more flexible and efficient compared to traditional inventory and turbine bypass strategies.
基金supported by Beijing Natural Science Foundation (Grant No.3202014)。
文摘The supercritical CO_(2)(S-CO_(2)) Brayton cycle is expected to replace steam cycle in the application of solar power tower system due to the attractive potential to improve efficiency and reduce costs.Since the concentrated solar power plant with thermal energy storage is usually located in drought area and used to provide a dispatchable power output,the S-CO_(2) Brayton cycle has to operate under fluctuating ambient temperature and diverse power demand scenarios.In addition,the cycle design condition will directly affect the off-design performance.In this work,the combined effects of design condition,and distributions of ambient temperature and power demand on the cycle operating performance are analyzed,and the off-design performance maps are proposed for the first time.A cycle design method with feedback mechanism of operating performance under varied ambient temperature and power demand is introduced innovatively.Results show that the low design value of compressor inlet temperature is not conductive to efficient operation under low loads and sufficient output under high ambient temperatures.The average yearly efficiency is most affected by the average power demand,while the load cover factor is significantly influenced by the average ambient temperature.With multi-objective optimization,the optimal solution of designed compressor inlet temperature is close to the minimum value of35℃ in Delingha with low ambient temperature,while reaches 44.15℃ in Daggett under the scenario of high ambient temperature,low average power demand,long duration and large value of peak load during the peak temperature period.If the cycle designed with compressor inlet temperature of 35℃ instead of 44.15℃ in Daggett under light industry power demand,the reduction of load cover factor will reach 0.027,but the average yearly efficiency can barely be improved.