期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Research on the MPPT of Photovoltaic Power Generation Based on Improved WOA and P&O under Partial Shading Conditions
1
作者 Jian Zhong Lei Zhang Ling Qin 《Energy Engineering》 EI 2024年第4期951-971,共21页
Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditiona... Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditional maximum power point tracking(MPPT)methods have shortcomings in tracking to the global maximum power point(GMPP),resulting in a dramatic decrease in output power.In order to solve the above problems,intelligent algorithms are used in MPPT.However,the existing intelligent algorithms have some disadvantages,such as slow convergence speed and large search oscillation.Therefore,an improved whale algorithm(IWOA)combined with the P&O(IWOA-P&O)is proposed for the MPPT of PV power generation in this paper.Firstly,IWOA is used to track the range interval of the GMPP,and then P&O is used to accurately find the MPP in that interval.Compared with other algorithms,simulation results show that this method has an average tracking efficiency of 99.79%and an average tracking time of 0.16 s when tracking GMPP.Finally,experimental verification is conducted,and the results show that the proposed algorithm has better MPPT performance compared to popular particle swarm optimization(PSO)and PSO-P&O algorithms. 展开更多
关键词 photovoltaic power generation maximum power point tracking whale algorithm perturbation and observation
下载PDF
Short-term prediction of photovoltaic power generation based on LMD-EE-ESN with error correction
2
作者 YU Xiangqian LI Zheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期360-368,共9页
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog... Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction. 展开更多
关键词 photovoltaic(PV)power generation system short-term forecast local mean decomposition(LMD) energy entropy(EE) echo state network(ESN)
下载PDF
Discussion on the Soil and Water Conservation Model in Mountain Photovoltaic Power Generation Project
3
作者 Aijun LIN Junwen TANG 《Asian Agricultural Research》 2024年第10期28-31,37,共5页
In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has receiv... In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has received widespread attention and application worldwide.However,during the construction and operation of mountain photovoltaic power generation projects,water and soil erosion has become a major challenge,which not only restricts the sustainable development process of the project,but also has a significant negative impact on the local ecological environment.This article deeply analyzes the multiple causes,extensive impacts and effective prevention and control strategies of water and soil erosion in mountain photovoltaic power generation projects.The results show that rainfall intensity,terrain slope,soil type and vegetation coverage are the four key factors leading to soil erosion.Soil erosion not only causes a sharp decline in soil fertility,but also aggravates the problem of sediment deposition in rivers and reservoirs,and poses a direct threat to the stability and operating efficiency of photovoltaic equipment.In order to deal with the above problems,this paper innovatively puts forward a series of soil and water conservation technologies,covering multiple dimensions such as engineering measures,plant measures,farming measures and temporary measures,and deeply discusses the application models and management strategies of these measures in key stages such as planning and design,construction,operation and maintenance.Through specific case analysis,the successful practical experience of soil and water conservation is refined and summarized,and the key role of community cooperation,technical support and modern monitoring technology in preventing and controlling soil and water erosion is further emphasized.This article aims to achieve a win-win situation of ecological environment protection and energy development and utilization through scientific planning and effective governance,and contribute to the construction of a green,low-carbon,and sustainable energy system. 展开更多
关键词 Mountain photovoltaic power generation Soil erosion Prevention and control measures Sustainable development
下载PDF
Research on the Application of New Energy Photovoltaic Power Generation Technology
4
作者 Weimin Liu Yue Qi 《Journal of Electronic Research and Application》 2024年第5期168-173,共6页
With the rapid development of technology and economy,the demand for energy in society is increasing.People are gradually realizing that fossil energy is limited,and the development of new energy may also face situatio... With the rapid development of technology and economy,the demand for energy in society is increasing.People are gradually realizing that fossil energy is limited,and the development of new energy may also face situations where it cannot meet social needs.The problem of resource shortage is gradually exposed to people.Therefore,the development of usable new energy has become an urgent problem for society to solve.At present,electricity is the most widely used energy source worldwide and photovoltaic power generation technology is gradually becoming well-known.As an emerging industry,the development of photovoltaic power generation still requires continuous promotion by national and social policies to be extended to various industries and ensure the stability of its energy supply.This article mainly outlines the principles,characteristics,and advantages of photovoltaic power generation,and briefly explains the current technology types and application aspects of photovoltaic power generation to contribute to its promotion and better serve all aspects of social life with new energy. 展开更多
关键词 New energy photovoltaic power generation APPLICATION
下载PDF
Comprehensive Benefit Evaluation of SZ Distributed Photovoltaic Power Generation Project Based on AHP-Matter-Element Extension Model
5
作者 Shuli Jing 《Journal of Electronic Research and Application》 2024年第1期60-68,共9页
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen... With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects. 展开更多
关键词 Distributed photovoltaic power generation Comprehensive benefits EVALUATION
下载PDF
Economic Evaluation Method of Photovoltaic Power Generation Installed in Ordinary Homes 被引量:1
6
作者 Yasushi Iwasaki Kayoko Yamamoto 《Smart Grid and Renewable Energy》 2014年第6期137-151,共15页
This study aims to develop an economic evaluation method for installing photovoltaic power generation in ordinary homes using GIS (Geographic Information Systems). The conclusions can be summarized in the following th... This study aims to develop an economic evaluation method for installing photovoltaic power generation in ordinary homes using GIS (Geographic Information Systems). The conclusions can be summarized in the following three points: 1) This method determines the profit and loss and payback period in order to evaluate the installation of photovoltaic power generation, taking into account the price of equipment, solar battery module conversion efficiency, subsidy, electricity purchase price, service life and rate for selling electricity. 2) The proposed evaluation method was applied to Kanagawa Prefecture in Japan, providing plural scenarios. Using a solar battery module conversion efficiency of more than 15%, it is possible to make the payback period shorter than the 20-year service life and anticipate a profit in almost the whole area. 3) The areas suitable for photovoltaic power generation are Kawasaki City and Ninomiya-machi. It is necessary to adopt measures to increase the subsidy and install photovoltaic power generating systems in specific places in areas where subsidies are not provided in enough amounts. 展开更多
关键词 photovoltaic power generation ECONOMIC Evaluation SUBSIDY PROFIT and Loss and Payback PERIOD GIS (Geographic Information Systems)
下载PDF
Preliminary Feasibility Study on Application of Very Large Scale-Photovoltaic Power Generation in China 被引量:1
7
作者 HuXuehao ZhouXiaoxin BaiXiaomin ZhangWentao 《Electricity》 2005年第1期48-52,共5页
Some energy experts believe that solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based ... Some energy experts believe that solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21 century, the pictures of VLS-PV power genera- tion is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed. 展开更多
关键词 very large scale photovoltaic power generation preliminary feasibility study
下载PDF
Solar Shutters based on Photovoltaic Power Generation 被引量:1
8
作者 LUO Zhixuan 《International Journal of Plant Engineering and Management》 2020年第4期193-204,共12页
This paper introduces a set of electrical energy-saving system for commercial office buildings,aiming at making better use of solar energy and photovoltaic power generation.Solar energy is a renewable energy source,wh... This paper introduces a set of electrical energy-saving system for commercial office buildings,aiming at making better use of solar energy and photovoltaic power generation.Solar energy is a renewable energy source,which is inexhaustible clean energy and has great commercial application value.Based on this fact,we plan to design a unique and novel solar shutter in combination with the daily observation and the shape of solar panels.The shutter blades are equipped with an automatic light tracking system,and the angle of the blades can be adjusted in time through photoresistor induction,that is,as much solar energy as possible can be converted into electric energy for load use,and at the same time,comfortable light can be provided for the house.In essence,the system is a small photovoltaic power generation system,which runs all day with high-efficiency based on automatic sun tracking.Among them,the basic operation route includes:solar position detection,computer data processing,photovoltaic and electric volt energy conversion,circuit connection,etc.From the current debugging results,the shutter has the characteristics of humanization,high efficiency,cleanliness and so on.Through this energy-saving system,we hope to maximize the use of solar energy in the premise of low cost,so as to achieve the purpose of energy saving. 展开更多
关键词 solar shutter photovoltaic power generation working principle and performance
下载PDF
Effect of Photovoltaic Power Generation on Carbon Dioxide Emission Reduction under Double Carbon Background
9
作者 Zhao Xinrui Hao Lei +2 位作者 Wu Yiling Xu Hong Dong Jinxiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第4期151-163,共13页
Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean ... Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean and renewable power source with excellent potential for further development and utilization.In 2021,the global solar installed capacity was about 749.7 GW.Establishing correlations between solar power generation,standard coal equivalent,carbon sinks,and green sinks is crucial.However,there have been few reports about correlations between the efficiency of tracking solar photovoltaic panels and the above parameters.This paper calculates the increased power generation achievable through the use of tracking photovoltaic panels compared with traditional fixed panels and establishes relationships between power generation,standard coal equivalent,and carbon sinks,providing a basis for attempts to reduce reliance on carbon-based fuels.The calculations show that power generation efficiency can be improved by about 26.12%by enabling solar panels to track the sun's rays during the day and from season to season.Through the use of this improved technology,global CO_(2) emissions can be reduced by 183.63 Mt,and the standard coal equivalent can be reduced by 73.67 Mt yearly.Carbon capture is worth approximately EUR 15.48 billion,and carbon accounting analysis plays a vital role in carbon trading. 展开更多
关键词 photovoltaic power generation carbon accounting carbon sink emission reduction
下载PDF
PSO-BP-Based Optimal Allocation Model for Complementary Generation Capacity of the Photovoltaic Power Station
10
作者 Zhenfang Liu Haibo Liu Dongmei Zhang 《Energy Engineering》 EI 2023年第7期1717-1727,共11页
To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based o... To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system. 展开更多
关键词 photovoltaic power station complementary power generation capacity optimization resource allocation
下载PDF
Performance on Power,Hot and Cold Water Generation of a Hybrid Photovoltaic Thermal Module
11
作者 Thakrittorn Pansiri Attakorn Asanakham +1 位作者 Thoranis Deethayat Tanongkiat Kiatsiriroat 《Energy Engineering》 EI 2022年第5期1861-1878,共18页
This paper proposed a new function of photovoltaic thermal(PVT)module to produce nocturnal cool water not just only generating electrical power and hot water during daytime.Experimental tests were carried out under Ch... This paper proposed a new function of photovoltaic thermal(PVT)module to produce nocturnal cool water not just only generating electrical power and hot water during daytime.Experimental tests were carried out under Chiang Mai tropical climate with a 200 Wp monocrystalline PVT module having dimensions of 1.601 m×0.828 m connected with two water tanks each of 60 L taken for hot and cool water storages.The module was facing south with 18o inclination.The electrical load was a 200 W halogen lamp.From experiments,by taking the module as a nocturnal radiative cooling surface,the cool water temperature in the cool storage tank could be reduced 2℃–3℃each night and the temperature could be reduced from 31.5℃to 22.1℃within 4 consecutive days.The cool water at approximately 23℃was also used to cool down the PVT module from noon when the PVT module temperature was rather high,and then the module temperature immediately dropped around 5℃and approximately 10%increase of electrical power could be achieved.A set of mathematical models was also developed to predict the PVT module temperature and the hot water temperature including the cool water temperature in the storage tanks during daytime and nighttime.The simulated results agreed well with the experimental data. 展开更多
关键词 photovoltaic thermal module power generation hot and cold water production nocturnal cooling
下载PDF
Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis
12
作者 Wenchao Ma 《Energy Engineering》 EI 2023年第7期1685-1699,共15页
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra... The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy. 展开更多
关键词 photovoltaic power generation short term forecast multiscale permutation entropy local mean decomposition singular spectrum analysis
下载PDF
Research Progress of Photovoltaic Power Prediction Technology Based on Artificial Intelligence Methods
13
作者 Daixuan Zhou Yujin Liu +2 位作者 Xu Wang Fuxing Wang Yan Jia 《Energy Engineering》 EI 2024年第12期3573-3616,共44页
With the increasing proportion of renewable energy in China’s energy structure,among which photovoltaic power generation is also developing rapidly.As the photovoltaic(PV)power output is highly unstable and subject t... With the increasing proportion of renewable energy in China’s energy structure,among which photovoltaic power generation is also developing rapidly.As the photovoltaic(PV)power output is highly unstable and subject to a variety of factors,it brings great challenges to the stable operation and dispatch of the power grid.Therefore,accurate short-term PV power prediction is of great significance to ensure the safe grid connection of PV energy.Currently,the short-term prediction of PV power has received extensive attention and research,but the accuracy and precision of the prediction have to be further improved.Therefore,this paper reviews the PV power prediction methods from five aspects:influencing factors,evaluation indexes,prediction status,difficulties and future trends.Then summarizes the current difficulties in prediction based on an in-depth analysis of the current research status of physical methods based on the classification ofmodel features,statistical methods,artificial intelligence methods,and combinedmethods of prediction.Finally,the development trend ofPVpower generation prediction technology and possible future research directions are envisioned. 展开更多
关键词 photovoltaic power generation power prediction artificial intelligence algorithm
下载PDF
Design of Off-grid Home Photovoltaic Power System in Shaanxi Region
14
作者 Ke Cheng Jie Yang Yan Chen 《Energy and Power Engineering》 2013年第4期202-204,共3页
Shaanxi province has three land forms which are Shaanxi’s northern plateau, Guanzhong plain and Qinba mountain land in the south of Shaanxi province. So the climate type is also divided into three types and the solar... Shaanxi province has three land forms which are Shaanxi’s northern plateau, Guanzhong plain and Qinba mountain land in the south of Shaanxi province. So the climate type is also divided into three types and the solar energy resources distribution has a big gap between different regions. PV modules, as the core component of off-grid home photovoltaic power system, their output power are mainly influenced by sun radiation, array tile angle, temperature and so on. Based on the reasons above, in order to apply off-grid home photovoltaic power system in Shaanxi region, this paper designs different systems with different configuration, and makes the performance prediction. The results show that the capacity of PV modules reaches to the largest in Shaanxi northern region, reach minimum in Shaanxi southern region and the output power in the winter is less than in the summer and reach minimum in the spring and autumn. In light of the characteristics above, this research select different type and configuration in different areas systematically, and the performance analysis shows that the configuration can meet the basic life demand of power to the people whose power is not available. 展开更多
关键词 SOLAR photovoltaic power generation off-grid HOME photovoltaic power System
下载PDF
Application Research of Off-grid Home Photovoltaic Power System in Shaanxi Northern Region
15
作者 Ke Cheng Liu Hao Jie Yang 《Energy and Power Engineering》 2013年第4期194-197,共4页
Because working performance of off-grid home photovoltaic power system is influenced by factors of solar radiation, ambient temperature and installation angle, this research established power supply model, analyzed wo... Because working performance of off-grid home photovoltaic power system is influenced by factors of solar radiation, ambient temperature and installation angle, this research established power supply model, analyzed working performance and optimized system configuration, by referencing weather conditions of Yulin and Yan’an and those factors. Results showed that under given solar radiation and ambient temperature, difference of installation angle can cause 30% to 40% difference of performance. In order to meet power demand, installation angles of Yulin and Yan'an were selected as 40 degree and 30 degree, and annual output power were 1.44 kWh/Wp and 1.32 kWh/Wp. Based on those results, the configuration of Yulin and Yan'an was 150 Wp and 170 Wp, and annual output power was 172.70 kWh and 179.66 kWh. Systems optimized above can meet the mid-scale demand in Shaanxi northern region and build theoretical foundation of application. 展开更多
关键词 off-grid HOME photovoltaic power System photovoltaic SOLAR
下载PDF
POWER GENERATION POTENTIAL OF BIPV APPLICATION IN CHINA
16
作者 由世俊 华君 +2 位作者 涂光备 吕灿仁 杨洪兴 《Transactions of Tianjin University》 EI CAS 2001年第1期17-20,共4页
This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energ... This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energy resource to contribute to world electrical energy demand for protecting environment from reduced fossil fuel consumption.The available solar energy resource of 14 cities and the potential power generation from PV claddings in buildings in China were estimated.The economical analysis of BIPV application is discussed.It is found that the potential is significant and the government should play an important role in its development. 展开更多
关键词 building-integrated photovoltaics solar electrical power generation solar energy resource
下载PDF
Analysis and Modeling of Time Output Characteristics for Distributed Photovoltaic and Energy Storage
17
作者 Kaicheng Liu Chen Liang +1 位作者 Xiaoyang Dong Liping Liu 《Energy Engineering》 EI 2024年第4期933-949,共17页
Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-tempora... Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions. 展开更多
关键词 photovoltaic power generation spatio-temporal prediction temporal convolutional network long short-term memory network
下载PDF
Interpretation and revision proposals of GB/T 29319-2012,Technical requirements for connecting photovoltaic power system to distribution network 被引量:2
18
作者 Lu Minhui Sun Wenwen He Guoqing 《China Standardization》 2022年第1期62-64,I0065,共4页
In the context of clean and Low-carbon energy transformation and new power system,China^photovoltaic power generation will usher in great development.Its large-scale access impacts the safe and stable operation of the... In the context of clean and Low-carbon energy transformation and new power system,China^photovoltaic power generation will usher in great development.Its large-scale access impacts the safe and stable operation of the power grid with increasing significance.In order to strengthen the support and Leading roles of the standards,it is urgent to revise the national standard GB/T 29319-2012,Technical requirements for connecting photovoltaic power system to distribution network,based on the current development trend of photovoltaic power generation and power grid transformation needs.This paper firstly interprets the important technical provisions of the standard,then analyzes the problems in its implementation and finally proposes some revision suggestions in terms of grid adaptability,power control and fault crossing,to facilitate safe and orderly development of photovoltaic power generation in China. 展开更多
关键词 photovoltaic power generation distribution network standard guide amendments
下载PDF
Analysis and Power Quality Improvement in Hybrid Distributed Generation System with Utilization of Unified Power Quality Conditioner
19
作者 Noor Zanib Munira Batool +4 位作者 Saleem Riaz Farkhanda Afzal Sufian Munawar Ibtisam Daqqa Najma Saleem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1105-1136,共32页
This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a u... This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink. 展开更多
关键词 photovoltaic wind turbine unified power quality conditioner power flow distributed generation system
下载PDF
Forecast of Power Generation for Grid-Connected Photo-voltaic System Based on Grey Theory and Verification Model
20
作者 Ying-zi Li Jin-cang Niu Li Li 《Energy and Power Engineering》 2013年第4期177-181,共5页
Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected... Being photovoltaic power generation affected by radiation strength, wind speed, clouds cover and environment temperature, the generating in each moment is fluctuating. The operational characteristics of grid-connected PV systems are coincided with gray theory application conditions. A gray theory model has been applied in short-term forecast of grid-connected photovoltaic system. The verification model of the probability of small error will help to check the accuracy of the gray forecast results. The calculated result shows that the ?model accuracy has been greatly enhanced. 展开更多
关键词 FORECAST of power generation GRID-CONNECTED photovoltaic SYSTEM Data DISCRETIZATION GREEDY Algorithm Continuous Attributes ROUGH Sets
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部