期刊文献+
共找到341篇文章
< 1 2 18 >
每页显示 20 50 100
Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation
1
作者 Juan Zhang Xiaofei Ji +13 位作者 Xiaoting Wang Liujiang Zhang Leyu Bi Zhenhuang Su Xingyu Gao Wenjun Zhang Lei Shi Guoqing Guan Abuliti Abudula Xiaogang Hao Liyou Yang Qiang Fu Alex K.‑Y.Jen Linfeng Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期571-582,共12页
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai... A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication. 展开更多
关键词 inverted perovskite solar cells Perovskite solar modules Two-step film formation CRYSTALLIZATION Defect passivation
下载PDF
Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable MAPbI_(3)-Based Inverted Perovskite Solar Cells 被引量:1
2
作者 Xuefeng Zhu Rui Lin +5 位作者 Hao Gu Huichao Hu Zheng Liu Guichuan Xing Yibing Wu Xinhua Ouyang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期251-259,共9页
Perovskite solar cells(PSCs)have been demonstrated to be one of the most promising technologies in the field of renewable energy.However,the presence of the defects in the perovskite films greatly limits the efficienc... Perovskite solar cells(PSCs)have been demonstrated to be one of the most promising technologies in the field of renewable energy.However,the presence of the defects in the perovskite films greatly limits the efficiency and the stability of the PSCs.The additive engineering is one of the most effective approaches to overcome this problem.Most of the successful additives are extracted from the petroleum-based materials,while the research on the biomass-based additives is still lagging behind.In this paper,two ecofriendly hydroxyalkyl cellulose additives,i.e.,hydroxyethyl cellulose(HEC)and hydroxylpropyl cellulose(HPC),are investigated on the performance of the MAPbl_(3)-based inverted PSCs.Due to the strong interaction between the hydroxyl groups of the cellulose and the divalent cations of the perovskite,these additives enhance the crystal grain orientation and significantly repair the defects of the perovskite films.Working as the additives,these two cellulose derivatives show a strong passivation ability,which significantly reduces the trap density and improves the optoelectronic feature of the PSCs.Compared with the average power conversion efficiency(PCE)of the control device(19.19%),an enhancement of~10%is achieved after the addition of HEC.The optimized device(PCE=21.25%)with a long-term stability(10:80 h,PCE=20.93%)is achieved by the incorporation of the HEC additives into the precursor solution.It is the best performance among the PSCs with the cellulose additives up to now.This research provides a novel choice to develop a cost-effective and renewable additive for the PSCs with high efficiency and excellent long-term stability. 展开更多
关键词 ADDITIVES hydroxyalkyl cellulose inverted perovskite solar cells MAPbl_(3)
下载PDF
Recent progress of inverted organic-inorganic halide perovskite solar cells
3
作者 Dongyang Li Yulan Huang +4 位作者 Zhiwei Ren Abbas Amini Aleksandra B.Djurišic Chun Cheng Gang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期168-191,共24页
In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide ... In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide application.The efficiency gap between IPSCs and regular structures has shrunk to less than 1%.Over the past few years,IPSC research has mainly focused on optimizing power conversion efficiency to accelerate the development of IPSCs.This review provides an overview of recent improvements in the efficiency of IPSCs,including interface engineering and novel film production techniques to overcome critical obstacles.Tandem and integrated applications of IPSCs are also summarized.Furthermore,prospects for further development of IPSCs are discussed,including the development of new materials,methods,and device structures for novel IPSCs to meet the requirements of commercialization. 展开更多
关键词 inverted perovskite solar cells Interface engineering Additive engineering Tandem solar cells Integrated solar cells
下载PDF
Thermally Evaporated ZnSe for Efficient and Stable Regular/Inverted Perovskite Solar Cells by Enhanced Electron Extraction
4
作者 Xin Li Guibin Shen +6 位作者 Xin Ren Ng Zhiyong Liu Yun Meng Yongwei Zhang Cheng Mu Zhi Gen Yu Fen Lin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期440-448,共9页
Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both l... Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics. 展开更多
关键词 high efficiency long-term stability planar regular/inverted perovskite solar cells thermal evaporation ZnSe electron transport layer
下载PDF
Hole‑Transport Management Enables 23%‑Efficient and Stable Inverted Perovskite Solar Cells with 84%Fill Factor
5
作者 Liming Liu Yajie Ma +7 位作者 Yousheng Wang Qiaoyan Ma Zixuan Wang Zigan Yang Meixiu Wan Tahmineh Mahmoudi Yoon‑Bong Hahn Yaohua Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期154-166,共13页
NiO_(x)-based inverted perovskite solar cells(PSCs)havepresented great potential toward low-cost,highly efficient and stablenext-generation photovoltaics.However,the presence of energy-levelmismatch and contact-interf... NiO_(x)-based inverted perovskite solar cells(PSCs)havepresented great potential toward low-cost,highly efficient and stablenext-generation photovoltaics.However,the presence of energy-levelmismatch and contact-interface defects between hole-selective contacts(HSCs)and perovskite-active layer(PAL)still limits device efficiencyimprovement.Here,we report a graded configuration based on bothinterface-cascaded structures and p-type molecule-doped compositeswith two-/three-dimensional formamidinium-based triple-halideperovskites.We find that the interface defects-induced non-radiativerecombination presented at HSCs/PAL interfaces is remarkably suppressedbecause of efficient hole extraction and transport.Moreover,astrong chemical interaction,halogen bonding and coordination bondingare found in the molecule-doped perovskite composites,whichsignificantly suppress the formation of halide vacancy and parasitic metallic lead.As a result,NiO_(x)-based inverted PSCs present a power-conversion-efficiency over 23%with a high fill factor of 0.84 and open-circuit voltage of 1.162 V,which are comparable to the best reported around 1.56-electron volt bandgap perovskites.Furthermore,devices with encapsulation present high operational stability over 1,200 h during T_(90) lifetime measurement(the time as a function of PCE decreases to 90%of its initial value)under 1-sun illumination in ambient-air conditions. 展开更多
关键词 inverted NiO_(x)-based perovskite solar cells Hole-transport management Interface-induced defect passivation High performance and stability
下载PDF
Simple DSP Implementation of Maximum Power Pointer Tracking and Inverter Control for Solar Energy Applications 被引量:1
6
作者 Woonki Na Thomas Carley +2 位作者 Luke Ketcham Brendan Zimmer Pengyuan Chen 《Journal of Power and Energy Engineering》 2016年第9期61-76,共17页
In this paper, a simple Digital Signal Processor (DSP) based Maximum Power Pointer Tracking (MPPT) control and Inverter Control is presented for solar energy applications, especially photovoltaic and wind energy syste... In this paper, a simple Digital Signal Processor (DSP) based Maximum Power Pointer Tracking (MPPT) control and Inverter Control is presented for solar energy applications, especially photovoltaic and wind energy systems. The proposed MPPT controlled boost converter is able to reduce the inrush current and the overshoot of the output voltage of the system. Details of the proposed Maltab-Simulink based MPPT and Inverter Control are shown and implemented using a DSP. The proposed system is analyzed and simulated for verification. To validate the system, a 100 W prototype test-bed is built and tested. The results show that the proposed system can be applicable for solar energy applications. 展开更多
关键词 DSP MPPT inverter solar Energy
下载PDF
Real-Time Implementation of Solar Inverter with Novel MPPT Control Algorithm for Residential Applications
7
作者 Ayaz Ahmad Rajaji Loganathan 《Energy and Power Engineering》 2013年第6期427-435,共9页
Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture th... Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture the maximum power from the sun light in order to generate maximum power from the inverter, control system must be an equally efficient with the well designed power electronic circuits. Maximum power point tracking (MPPT) control system in general is taking care of extraction of maximum power from the sun light whereas current controller is mainly designed to optimize the inverter power to feed to power grid. In this paper, a novel MPPT algorithm using neuro fuzzy system is presented to ensure the maximum MPPT efficiency in order to ensure the maximum power across the inverter terminals. Simulation and experimental results for residential solar system with power electronic converters and analysis have been presented in this paper in order to prove the proposed algorithm. 展开更多
关键词 PV Cells solar inverter MPPT Control DCDC CONVERTER and Current CONTROLLER
下载PDF
Research and Design of Inverter Applied in Solar PV Systems Connected to Distribution Grid
8
作者 Nguyen Duc Minh Trinh Trong Chuong +2 位作者 Bui Van Huy Quach Duc Cuong Bui Dinh Thanh 《Journal of Electrical Engineering》 2019年第1期28-38,共11页
This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter t... This paper presents the results of research on the application of inverter in the grid connected solar photovoltaics (PV) system. The main content of the article is to control the three-phase grid connected inverter to meet the requirement of controlling the reactive power to zero at a node of the distribution network while maximizing the active power transmitted to the grid. The control circuits are synthesized on the dq coordinate system and verified on the simulation model by Matlab/Simulink. Both simulation and experimental prototype on 5 kW inverter, being connected to low voltage grid, have been built to show the good results and the practical readiness for implementation. 展开更多
关键词 SVPWM REACTIVE power solar PV GRID CONNECTED inverter
下载PDF
Extension of Distribution Transformer Life in the Presence of Smart Inverter-based Distributed Solar Photovoltaic Systems
9
作者 Kanhaiya Kumar Saran Satsangi Ganesh Balu Kumbhar 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第1期88-95,共8页
A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At ... A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At the same time,distribution utilities are adopting smart inverter-based distributed solar photovoltaic(SPV)systems to maximize renewable generation.The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers.The proposed method is first tested on a modified IEEE-123 node distribution feeder.After that,the procedure is applied to a practical distribution system,i.e.,the Indian Institute of Technology(IIT)Roorkee campus,India.The transformer aging models,alongside advanced control functionalities of grid-tied smart inverter-based SPV systems,are implemented in MATLAB.The open-source simulation tool(OpenDSS)is used to model distribution networks.To analyze effectiveness of various inverter functionalities,time-series simulations are performed using exponential load models,considering daily load curves from multiple seasons,load types,current harmonics,etc.Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer.Simulation results demonstrate,simply by incorporating smart inverter-based SPV systems,transformer aging is reduced by 15%to 22%in comparison to SPV systems operating with traditional inverters. 展开更多
关键词 Distribution transformer loss of life smart inverter functions solar photovoltaic systems thermal models Volt-VAr control
原文传递
Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO_2 nanotubes 被引量:1
10
作者 Mehdi Ahmadi Sajjad Rashidi Dafeh Hamed Fatehy 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期320-324,共5页
An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient c... An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (Rs) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls. 展开更多
关键词 inverted polymer solar cells TiO2 nanotubes electrochemical-anodizing doctor blading
下载PDF
Effective Surface Treatment for High‑Performance Inverted CsPbI2Br Perovskite Solar Cells with Efficiency of 15.92% 被引量:2
11
作者 Sheng Fu Xiaodong Li +3 位作者 Li Wan Wenxiao Zhang Weijie Song Junfeng Fang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期133-145,共13页
Developing high-efficiency and stable inverted CsPbI2Br perovskite solar cells is vitally urgent for their unique advantages of removing adverse dopants and compatible process with tandem cells in comparison with the ... Developing high-efficiency and stable inverted CsPbI2Br perovskite solar cells is vitally urgent for their unique advantages of removing adverse dopants and compatible process with tandem cells in comparison with the regular.However,relatively low opening circuit voltage(Voc)and limited moisture stability have lagged their progress far from the regular.Here,we propose an effective surface treatment strategy with high-temperature FABr treatment to address these issues.The induced ions exchange can not only adjust energy level,but also gift effective passivation.Meanwhile,the gradient distribution of FA+can accelerate the carriers transport to further suppress bulk recombination.Besides,the Br-rich surface and FA+substitution can isolate moisture erosions.As a result,the optimized devices show champion efficiency of 15.92%with Voc of 1.223 V.In addition,the tolerance of humidity and operation get significant promotion:maintaining 91.7%efficiency after aged at RH 20%ambient condition for 1300 h and 81.8%via maximum power point tracking at 45°C for 500 h in N2.Furthermore,the unpackaged devices realize the rare reported air operational stability and,respectively,remain almost efficiency(98.9%)after operated under RH 35%for 600 min and 91.2%under RH 50%for 300 min. 展开更多
关键词 CsPbI2Br inverted perovskite solar cells Effective passivation Voc loss Stability
下载PDF
Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells 被引量:2
12
作者 Bingbing Chen Pengyang Wang +3 位作者 Ningyu Ren Renjie Li Ying Zhao Xiaodan Zhang 《Journal of Semiconductors》 EI CAS CSCD 2022年第5期89-103,共15页
Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long... Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition(ALD) processed tin dioxide(SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm^(2), and fill factor of 81.07%. More importantly, the compact and stable SnO_(2) film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO_(2) provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future. 展开更多
关键词 atomic layer deposition tin dioxide additional buffer layer efficiency and stability inverted perovskite solar cells
下载PDF
Spatial configuration engineering of perylenediimide-based non-fullerene electron transport materials for efficient inverted perovskite solar cells 被引量:1
13
作者 Mengmeng Zheng Yawei Miao +5 位作者 Ali Asgher Syed Cheng Chen Xichuan Yang Liming Ding Huaming Li Ming Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期374-382,共9页
Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates fo... Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates for perovskite solar cells(PSCs).However,the conjugated rigid plane structure of PDI units result in PDI-based ETMs tending to form large aggregates,limiting their application and photovoltaic performance.In this study,to restrict aggregation and further enhance the photovoltaic performance of PDI-type ETMs,two PDI-based ETMs,termed PDO-PDI2(dimer)and PDO-PDI3(trimer),were constructed by introducing a phenothiazine 5,5-dioxide(PDO)core building block.The research manifests that the optoelectronic properties and film formation property of PDO-PDI2 and PDO-PDI3 were deeply affected by the molecular spatial configuration.Applied in PSCs,PDO-PDI3 with threedimensional spiral molecular structure,exhibits superior electron extraction and transport properties,further achieving the best PCE of 18.72%and maintaining 93%of its initial efficiency after a 720-h aging test under ambient conditions. 展开更多
关键词 Non-fullerene Electron transport material Perovskite solar cell inverted structure
下载PDF
Optimal Sizing of Solar/Wind Hybrid Off-Grid Microgrids Using an Enhanced Genetic Algorithm 被引量:2
14
作者 Abdrahamane Traoré Hatem Elgothamy Mohamed A. Zohdy 《Journal of Power and Energy Engineering》 2018年第5期64-77,共14页
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e... This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods. 展开更多
关键词 Optimization off-grid Microgrid Renewable ENERGY ENERGY Storage Systems (ESS) solar Photovoltaic (PV) WIND Battery HYBRID Genetic Algorithm (GA)
下载PDF
Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer 被引量:1
15
作者 Mehdi Ahmadi Sajjad Rashidi Dafeh +1 位作者 Samaneh Ghazanfarpour Mohammad Khanzadeh 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期406-410,共5页
We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hex... We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths. 展开更多
关键词 inverted polymer solar cells electron transport layer vanadium-doped TiO2 thin films solvothermal
下载PDF
MoO_3/Ag/Al/ZnO intermediate layer for inverted tandem polymer solar cells
16
作者 卿健 钟镇锋 +2 位作者 刘勇 李宝军 周翔 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期669-672,共4页
We report an MoO3/Ag/Al/ZnO intermediate layer connecting two identical bulk heterojunction subcells with a poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT and PCBM) active layer for in... We report an MoO3/Ag/Al/ZnO intermediate layer connecting two identical bulk heterojunction subcells with a poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT and PCBM) active layer for inverted tan- dem polymer solar cells. The highly transparent intermediate layer with an optimized thickness realizes an Ohmic contact between the two subcells for effective charge extraction and recombination. A maximum power conversion efficiency of 3.76% is obtained for the tandem cell under 100 mW/cm2 illumination, which is larger than that of a single cell (3.15%). The open-circuit voltage of the tandem cell (1.18 V) approaches double that of the single cell (0.61 V). 展开更多
关键词 polymer solar cell inverted structure tandem solar cell intermediate layer
下载PDF
Inverted Organic Solar Cells with Improved Performance using Varied Cathode Buffer Layers 被引量:1
17
作者 Zhi-qiang Guan Jun-sheng Yu +1 位作者 Yue Zang Xing-xin Zeng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第5期625-630,I0004,共7页
有转换平面异质接面结构的器官的太阳能电池作为阴极缓冲区层(CBL ) 用几种材料基于 subphthalocyanine 和 C60 被制作,包括 tris-8-hydroxy-quinolinato 铝(Alq3 ) , bathophenanthroline (Bphen ) , bathocuproine, 2,3,8,9,14,15... 有转换平面异质接面结构的器官的太阳能电池作为阴极缓冲区层(CBL ) 用几种材料基于 subphthalocyanine 和 C60 被制作,包括 tris-8-hydroxy-quinolinato 铝(Alq3 ) , bathophenanthroline (Bphen ) , bathocuproine, 2,3,8,9,14,15-hexakis-dodecyl-sulfanyl-5,6,11,12,17,18-hexaazatrinaphthylene (HATNA ) ,和 Cs2CO3 的无机的混合物。最低没有住的分子的轨道的水平和太阳能电池表演上的器官的 CBL 的电子活动性的影响被比较。结果证明 Alq3, Bphen,和 HATNA 能显著地改进设备表演。最高的效率作为 CBL 与退火的 HATNA 从设备被获得并且没有 CBL,与设备相比在超过 7 次增加了。而且,有空间费用有限电流理论的模拟结果显示在在转换振荡结构的 organic/electrode 接口的 Schottky 障碍被插入 HATNA CBL 为 27% 减少。 展开更多
关键词 有机太阳能电池 电池性能 缓冲层 阴极 多样化 分子轨道能级 ALQ3 十二烷基
下载PDF
Multiple methoxy-substituted hole transporter for inverted perovskite solar cells
18
作者 Wei Yu Sajjad Ahmad +5 位作者 Hengkai Zhang Zhiliang Chen Qing Yang Xin Guo Can Li Gang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期127-131,共5页
Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lo... Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lower power conversion efficiency(PCE)and inferior reproducibility than conventional PSCs limit further developments.These problems are largely determined by the hole transporting layer(HTL)and the quality of the upper perovskite film[6-8];in particular,the latter is considerably influenced by the surface property of the underlying HTL. 展开更多
关键词 Multiple methoxy-substituted Wettability Small molecule Hole transporting layer inverted perovskite solar cells
下载PDF
Improved interfacial property by small molecule ethanediamine for high performance inverted planar perovskite solar cells
19
作者 Guodong Zhang Yunxin Zhang +9 位作者 Siqi Chen Hao Chen Le Liu Wenming Ding Jinhui Wang Anyu Zhang Shuping Pang Xin Guo Lianqing Yu Tonggang Jiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期467-474,共8页
We report a simple and effective method to realize desirable interfacial property for inverted planar perovskite solar cells(PSCs)by using small molecule ethanediamine for the construction of a novel polyelectrolyte h... We report a simple and effective method to realize desirable interfacial property for inverted planar perovskite solar cells(PSCs)by using small molecule ethanediamine for the construction of a novel polyelectrolyte hole transport material(P3CT-ED HTM).It is found that P3CT-ED can not only improve the hole transport property of P3CT-K but also improve the crystallinity of adjacent perovskite film.In addition,the introduction of ethanediamine into P3CT realigns the conduction and valence bands upwards,passivates surface defects and reduces nonradiative recombination.As a consequence,compared to P3CT-K hole transport layer(HTL)based devices,the average power conversion efficiency(PCE)is boosted from17.2% to 19.6% for the counterparts with P3CT-ED,with simultaneous enhancement in open circuit voltage and fill factor.The resultant device displays a champion PCE of 20.5% with negligible hysteresis. 展开更多
关键词 Improved interfacial property inverted planar perovskite solar cells Passivated trap states Crystallinity Ethanediamine
下载PDF
Recent advances of interface engineering in inverted perovskite solar cells
20
作者 余诗琪 熊壮 +6 位作者 王振涵 周海涛 马飞 瞿子涵 赵洋 楚新波 游经碧 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期53-65,共13页
Perovskite solar cells(PSCs)have witnessed great achievement in the past decade.Most of previous researches focus on the n-i-p structure of PSCs with ultra-high efficiency.While the n-i-p devices usually used the unst... Perovskite solar cells(PSCs)have witnessed great achievement in the past decade.Most of previous researches focus on the n-i-p structure of PSCs with ultra-high efficiency.While the n-i-p devices usually used the unstable charge transport layers,such as the hygroscopic doped spiro-OMe TAD,which affect the long-term stability.The inverted device with the p-i-n structure owns better stability when using stable undoped organic molecular or metal oxide materials.There are significant progresses in inverted PSCs,most of them related to charge transport or interface engineering.In this review,we will mainly summarize the inverted PSCs progresses related to the interface engineering.After that,we prospect the future direction on inverted PSCs. 展开更多
关键词 inverted perovskite solar cells charge transport layer interface modification defect passivation
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部