The paper was a truck transporting system that based on system engineering theory and driver, truck-and-train, road and transporting environment were essential factors. It analyzed andstudied nine subsystems consisted...The paper was a truck transporting system that based on system engineering theory and driver, truck-and-train, road and transporting environment were essential factors. It analyzed andstudied nine subsystems consisted of the tfour tactors, ensured running safety, high efficieney and lowconsumption of transporting truck and increased using time of truck and road.展开更多
This study uses a simulation-based approach to investigate the impact of delivery delays due to constraints on transport capacity, transit speed, and routing efficiencies on an economy with various levels of interdepe...This study uses a simulation-based approach to investigate the impact of delivery delays due to constraints on transport capacity, transit speed, and routing efficiencies on an economy with various levels of interdependency among firms. The simulation uses object-oriented programming to create specialized production, consumption, and transportation classes. A set of objects from each class is distributed randomly on a 2D plane. A road network is then established between fixed objects using Prim’s MST (Minimum Spanning Tree) algorithm, followed by construction of an all-pair shortest path matrix using the Floyd Warshall algorithm. A genetic algorithm-based vehicle routing problem solver employs the all-pair shortest path matrix to best plan multiple pickup and delivery orders. Production units utilize economic order quantities (EOQ) and reorder points (ROP) to manage inventory levels. Hicksian and Marshallian demand functions are utilized by consumption units to maximize personal utility. The transport capacity, transit speed, routing efficiency, and level of interdependence serve as 4 factors in the simulation, each assigned 3 distinct levels. Federov’s exchange algorithm is used to generate an orthogonal array to reduce the number of combination replays from 3<sup>4</sup> to just 9. The simulation results of a 9-run orthogonal array on an economy with 6 mining facilities, 12 industries, 8 market centers, and 8 transport hubs show that the level of firm interdependence, followed by transit speed, has the most significant impact on economic productivity. The principal component analysis (PCA) indicates that interdependence and transit speed can explain 90.27% of the variance in the data. According to the findings of this research, a dependable and efficient regional transportation network among various types of industries is critical for regional economic development.展开更多
露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模...露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模型建模为混合整数线性规划(Mixed Integer Linear Programming, MILP)模型,表述优化目标和问题约束;其次,考虑到求解MILP模型存在难以满足动态决策实时性的问题,基于蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)实现多车冲突消解,核心思想是利用搜索树的推演能力进行多车通行前瞻模拟,计算多车的最优通行优先级,动态调整多车的可行驶距离;此外,根据无人矿车在作业区内的作业特征设计不同的MCTS节点价值函数,实现综合考虑运输效率与作业特征的通行优先级排序;最后,设计作业区4,8,12个停车位场景下的多车通行仿真实验,与基于先到先服务(First-Come-FirstServed, FCFS)的方法进行对比,吞吐量提升22.03%~28.00%,平均停车等待时间缩短31.71%~50.79%。同时,搭建微缩智能车辆的6停车位作业区场景实验平台,多车单次运输作业总用时相比FCFS缩短了18.84%。仿真与微缩智能车辆的实验结果表明,本文提出的方法能够提升露天矿作业区多车运输效率。展开更多
文摘The paper was a truck transporting system that based on system engineering theory and driver, truck-and-train, road and transporting environment were essential factors. It analyzed andstudied nine subsystems consisted of the tfour tactors, ensured running safety, high efficieney and lowconsumption of transporting truck and increased using time of truck and road.
文摘This study uses a simulation-based approach to investigate the impact of delivery delays due to constraints on transport capacity, transit speed, and routing efficiencies on an economy with various levels of interdependency among firms. The simulation uses object-oriented programming to create specialized production, consumption, and transportation classes. A set of objects from each class is distributed randomly on a 2D plane. A road network is then established between fixed objects using Prim’s MST (Minimum Spanning Tree) algorithm, followed by construction of an all-pair shortest path matrix using the Floyd Warshall algorithm. A genetic algorithm-based vehicle routing problem solver employs the all-pair shortest path matrix to best plan multiple pickup and delivery orders. Production units utilize economic order quantities (EOQ) and reorder points (ROP) to manage inventory levels. Hicksian and Marshallian demand functions are utilized by consumption units to maximize personal utility. The transport capacity, transit speed, routing efficiency, and level of interdependence serve as 4 factors in the simulation, each assigned 3 distinct levels. Federov’s exchange algorithm is used to generate an orthogonal array to reduce the number of combination replays from 3<sup>4</sup> to just 9. The simulation results of a 9-run orthogonal array on an economy with 6 mining facilities, 12 industries, 8 market centers, and 8 transport hubs show that the level of firm interdependence, followed by transit speed, has the most significant impact on economic productivity. The principal component analysis (PCA) indicates that interdependence and transit speed can explain 90.27% of the variance in the data. According to the findings of this research, a dependable and efficient regional transportation network among various types of industries is critical for regional economic development.
文摘露天矿无人矿车在装卸载作业区内运输过程中的长时间停车等待是制约露天矿无人运输系统效率提升的瓶颈。为提高无人矿车的运输效率,本文结合作业区内的运输作业流程,提出一种基于动态可行驶距离的多车协同通行决策方法。首先,将决策模型建模为混合整数线性规划(Mixed Integer Linear Programming, MILP)模型,表述优化目标和问题约束;其次,考虑到求解MILP模型存在难以满足动态决策实时性的问题,基于蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)实现多车冲突消解,核心思想是利用搜索树的推演能力进行多车通行前瞻模拟,计算多车的最优通行优先级,动态调整多车的可行驶距离;此外,根据无人矿车在作业区内的作业特征设计不同的MCTS节点价值函数,实现综合考虑运输效率与作业特征的通行优先级排序;最后,设计作业区4,8,12个停车位场景下的多车通行仿真实验,与基于先到先服务(First-Come-FirstServed, FCFS)的方法进行对比,吞吐量提升22.03%~28.00%,平均停车等待时间缩短31.71%~50.79%。同时,搭建微缩智能车辆的6停车位作业区场景实验平台,多车单次运输作业总用时相比FCFS缩短了18.84%。仿真与微缩智能车辆的实验结果表明,本文提出的方法能够提升露天矿作业区多车运输效率。