期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Online Learning-Based Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
1
作者 Tong Minglei Li Song +1 位作者 Han Wanjiang Wang Xiaoxiang 《China Communications》 SCIE CSCD 2024年第3期230-246,共17页
Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal ... Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes. 展开更多
关键词 computing resource allocation mobile edge computing satellite-terrestrial networks task offloading decision
下载PDF
Adaptive Application Offloading Decision and Transmission Scheduling for Mobile Cloud Computing 被引量:6
2
作者 Junyi Wang Jie Peng +2 位作者 Yanheng Wei Didi Liu Jielin Fu 《China Communications》 SCIE CSCD 2017年第3期169-181,共13页
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off... Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations. 展开更多
关键词 mobile cloud computing application offloading decision transmission scheduling scheme Lyapunov optimization
下载PDF
Connected Vehicles Computation Task Offloading Based on Opportunism in Cooperative Edge Computing
3
作者 Duan Xue Yan Guo +1 位作者 Ning Li Xiaoxiang Song 《Computers, Materials & Continua》 SCIE EI 2023年第4期609-631,共23页
The traditional multi-access edge computing (MEC) capacity isoverwhelmed by the increasing demand for vehicles, leading to acute degradationin task offloading performance. There is a tremendous number ofresource-rich ... The traditional multi-access edge computing (MEC) capacity isoverwhelmed by the increasing demand for vehicles, leading to acute degradationin task offloading performance. There is a tremendous number ofresource-rich and idle mobile connected vehicles (CVs) in the traffic network,and vehicles are created as opportunistic ad-hoc edge clouds to alleviatethe resource limitation of MEC by providing opportunistic computing services.On this basis, a novel scalable system framework is proposed in thispaper for computation task offloading in opportunistic CV-assisted MEC.In this framework, opportunistic ad-hoc edge cloud and fixed edge cloudcooperate to form a novel hybrid cloud. Meanwhile, offloading decision andresource allocation of the user CVs must be ascertained. Furthermore, thejoint offloading decision and resource allocation problem is described asa Mixed Integer Nonlinear Programming (MINLP) problem, which optimizesthe task response latency of user CVs under various constraints. Theoriginal problem is decomposed into two subproblems. First, the Lagrangedual method is used to acquire the best resource allocation with the fixedoffloading decision. Then, the satisfaction-driven method based on trial anderror (TE) learning is adopted to optimize the offloading decision. Finally, acomprehensive series of experiments are conducted to demonstrate that oursuggested scheme is more effective than other comparison schemes. 展开更多
关键词 Multi-access edge computing opportunistic ad-hoc edge cloud offloading decision resource allocation TE learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部