We theoretically investigated laser trimming to adjust grating offset in phase-shifted fiber grating coupler (FGC) for all-optical switching application. It was clarified that the trimming made the extinction ratio hi...We theoretically investigated laser trimming to adjust grating offset in phase-shifted fiber grating coupler (FGC) for all-optical switching application. It was clarified that the trimming made the extinction ratio higher in all-optical FGC switch.展开更多
A multifunctional programmable gain amplifier(PGA) that provides gain and offset adjusting abilities for high-definition video analog front-ends(AFE) is presented. With a switched-capacitor structure, the PGA also...A multifunctional programmable gain amplifier(PGA) that provides gain and offset adjusting abilities for high-definition video analog front-ends(AFE) is presented. With a switched-capacitor structure, the PGA also acts as a sample and holder of the analog-to-digital converter(ADC) in the AFE to reduce the power consumption and chip area of the whole AFE. Furthermore, the PGA converts the single-ended video signal into differential signal for the following ADC to reject common-mode noise and interferences. The 9-bit digital-to-analog converter(DAC) for gain and offset adjusting is embedded into the switched capacitor networks of the PGA. A video AFE integrated circuit based on the proposed PGA is fabricated in a 0.18- m process. Simulation and measurement results show that the PGA achieves a gain control range of 0.90 to 2.34 and an offset control range of –220 to220 mV while consuming 10.1 mA from a 1.8 V power supply.展开更多
文摘We theoretically investigated laser trimming to adjust grating offset in phase-shifted fiber grating coupler (FGC) for all-optical switching application. It was clarified that the trimming made the extinction ratio higher in all-optical FGC switch.
基金Project supported by the National Natural Science Foundation of China(No.61106027)the Science and Technology Project of Shanxi Province(No.2014K05-14)
文摘A multifunctional programmable gain amplifier(PGA) that provides gain and offset adjusting abilities for high-definition video analog front-ends(AFE) is presented. With a switched-capacitor structure, the PGA also acts as a sample and holder of the analog-to-digital converter(ADC) in the AFE to reduce the power consumption and chip area of the whole AFE. Furthermore, the PGA converts the single-ended video signal into differential signal for the following ADC to reject common-mode noise and interferences. The 9-bit digital-to-analog converter(DAC) for gain and offset adjusting is embedded into the switched capacitor networks of the PGA. A video AFE integrated circuit based on the proposed PGA is fabricated in a 0.18- m process. Simulation and measurement results show that the PGA achieves a gain control range of 0.90 to 2.34 and an offset control range of –220 to220 mV while consuming 10.1 mA from a 1.8 V power supply.