The method and principle of common offset seismic surveys as well as the field data gathering and processing technique were introduced briefly. Through two urban active fault survey examples in Fuzhou and Shenyang, th...The method and principle of common offset seismic surveys as well as the field data gathering and processing technique were introduced briefly. Through two urban active fault survey examples in Fuzhou and Shenyang, the efficiency and limitation of using the common offset seismic reflection technique to carry out urban active fault surveys were probed. The results show that this technique has the properties of high resolving power, better reconstruction of subsurface structures, and real-time analyzing and interpretation of investigation results on site. This method can be used to quickly locate objects under investigation accurately in the areas with thinner Quaternary overburdens and strong bedrock interface fluctuations.展开更多
Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppre...Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppress multiples. The effect of suppressing multiples is compared with other multiple suppression methods.展开更多
The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a m...The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset(QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope(CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.展开更多
基金This research was supported by the project of "Experimental Prospecting of Active Fault in Urban Area"of the National Development and Reform Commission of China (Grant No.20041138)
文摘The method and principle of common offset seismic surveys as well as the field data gathering and processing technique were introduced briefly. Through two urban active fault survey examples in Fuzhou and Shenyang, the efficiency and limitation of using the common offset seismic reflection technique to carry out urban active fault surveys were probed. The results show that this technique has the properties of high resolving power, better reconstruction of subsurface structures, and real-time analyzing and interpretation of investigation results on site. This method can be used to quickly locate objects under investigation accurately in the areas with thinner Quaternary overburdens and strong bedrock interface fluctuations.
文摘Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppress multiples. The effect of suppressing multiples is compared with other multiple suppression methods.
基金supported by The National Key Research and Development Program Plane(No.2017YFC0601505)National Natural Science Foundation(No.41672325)Science&Technology Department of Sichuan Province Technology Project(No.2017GZ0393)
文摘The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset(QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope(CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.