On December 2, 2017, the 2nd Seminar on the Development Strategy of China's Oil and Gas Resources was held in Beijing. This seminar was hosted by the Strategic Research Center for Oil and Gas Resources, Ministry of L...On December 2, 2017, the 2nd Seminar on the Development Strategy of China's Oil and Gas Resources was held in Beijing. This seminar was hosted by the Strategic Research Center for Oil and Gas Resources, Ministry of Land (MLR) and Resources and sponsored by both the CNOOC Exploration Department and the School of Ocean and Earth Sciences of Tongji University. With the theme of "deepwater and deep-layer oil and gas resources and development strategy",展开更多
The history of China's offshore oil industry can be traced back to late 1950's when geophysical surveys started in limited offshore areas.Then,in 1960's and 1970's,a few exploratory wells scattered fro...The history of China's offshore oil industry can be traced back to late 1950's when geophysical surveys started in limited offshore areas.Then,in 1960's and 1970's,a few exploratory wells scattered from north down to south were drilled resulting in a number of discoveries with the total proven oil in place being merely 40 million tons.In fact,the China's offshore oil industry in a real sence did not emerge on the horizon until early 1980's when China opened its door to outside world and the China National Offshore Oil Corporation(CNOOC)was born.展开更多
Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodel...Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.展开更多
Along with the consumption increase of the petroleum products, more countries have transferred their attentions to the offshore fields, especially the deepwater oil and gas reserves. For deepwater exploitation, the ri...Along with the consumption increase of the petroleum products, more countries have transferred their attentions to the offshore fields, especially the deepwater oil and gas reserves. For deepwater exploitation, the risers must be installed to act as the conduits connecting surface platforms to subsea facilities. In this paper, the typical risers sorted by different classes are introduced, and the correspondent installation methods are presented. By investigating the recent projects performed in the deepwater hot spots, and combining the challenges of HYSY20 l for riser installation, a lifting device developed for assisting riser installation is proposed and detailed to satisfy the installation of deepwater risers in the LW3-1 Gas Field of 1500 m in the South China Sea. Tests on both the functions and performances of such a new system exhibit the satisfaction of meeting all challenging requirements of HYSY201 for application to riser installation in waters up to a depth of 3000 m in the South China Sea.展开更多
The oil and gas exploration in offshore China has made great achievements,and as the important areas of offshore exploration,the shallow waters contribute most of the oil and gas reserves and production.However,the av...The oil and gas exploration in offshore China has made great achievements,and as the important areas of offshore exploration,the shallow waters contribute most of the oil and gas reserves and production.However,the available area for exploration is diminishing and the cost of exploration is rising.The field changes and ever increasing difficulties of exploration bring new challenges technically and economically.Therefore,for effective exploration of shallow-water oil and gas in offshore China,it is necessary to center on the general requirements of becoming a powerful marine country and the ideas of value exploration,initiate key research projects in the fields of China's offshore stratigraphic-lithologic reserves,Paleogene reserves,buried-hill reserves,high temperature and pressure reserves and hydrocarbon-rich sags,and form geological theories and explorative technologies of large and medium size oil and gas field in offshore China.The measures regarding the challenges include:(1) Innovating theoretical understanding and optimizing new exploration fields,(2) developing technical capabilities and improving the success rate of exploration,and(3) enhancing management level and deepening value exploration.展开更多
On September 15,2014,China National Offshore Oil Co.,Ltd announced that a high production of oil and gas flow of 1.6106 m3/d was obtained in Well LS17-2-1 in deepwater area in northern South China Sea,which is the fi...On September 15,2014,China National Offshore Oil Co.,Ltd announced that a high production of oil and gas flow of 1.6106 m3/d was obtained in Well LS17-2-1 in deepwater area in northern South China Sea,which is the first great oil and gas discovery for self-run deepwater exploration in China sea areas,and a strategic breakthrough was made in natural gas exploration in deepwater area of Lingshui sag in Qiongdongnan Basin.Under the combined action of climax of international deepwater exploration,high oil prices,national demands of China,practical needs of exploration,breakthroughs in seismic exploration and testing technologies,innovations in geological cognition and breakthroughs in deepwater operation equipment,Lingshui 17-2 gas field is discovered.Among these factors,the innovation in reservoir forming geological cognition directly promotes the discovery.The quality of seismic data in the early time is poor,so key reservoir forming conditions such as effective source rocks,high quality reservoirs and oil-gas migration pathways are unable to be ascertained;with support of new seismic acquisition and processing technology,some researches show that Lingshui sag is a successive large and deep sag with an area of 5000 km2 and the maximum thickness of Cenozoic stratum of 13 km.In the Early Oligocene,the Lingshui sag was a semi-closed delta-estuarine environment,where the coalmeasure and marine mudstones in Lower Oligocene Yacheng Formation were developed.The Lingshui sag is a sag with high temperature,and the bottom temperature of source rocks in Yacheng Formation can exceed 250C,but the simulation experiment of hydrocarbon generation at high temperature indicates that the main part of this set of source rock is still in the gas-generation window,with resources of nearly 1 trillion cubic meters,so the Lingshui sag is a hydrocarbon-rich generation sag.In the Neogene,the axial canyon channel from the Thu Bon River in Vietnam passed through the Lingshui sag,and five stages of secondary channels were developed in the axial canyon channel,where four types of reservoirs with excellent physical properties including the axial sand,lateral accretion sand,natural levee sand as well as erosion residual sand were developed,and lithologic traps or structural-lithologic traps were formed.The diapiric zone in the southern Lingshui sag connects deep source rocks in Yacheng Formation and shallow sandstones in the channels,and the migration pattern of natural gas is a T-type migration pattern,in other words,the natural gas generated from Yacheng Formation migrates vertically to the interior of the channel sandbody,and then migrates laterally in the channel reservoirs and forms the reservoirs.Innovations of geophysical exploration technologies for complicated geological conditions of deepwater areas are made,such as the detuning comprehensive quantitative amplitude hydrocarbon detection technology,which greatly improves the success rate of deepwater exploration;key technologies of deepwater safety exploratory well testing represented by the platform-dragged riser displacement technology are developed,which greatly reduces the drilling test cost.The above key exploration technologies provide a strong guarantee for the efficient exploration and development of Lingshui gas field.展开更多
China National Offshore Oil Corporation (CNOOC) andHusky Oil China Limited have made a new deepwater gasdiscovery,Liuhua (LH) 34-2,which is the second deepwatergas discovery in the Pearl River Mouth Basin in the easte...China National Offshore Oil Corporation (CNOOC) andHusky Oil China Limited have made a new deepwater gasdiscovery,Liuhua (LH) 34-2,which is the second deepwatergas discovery in the Pearl River Mouth Basin in the easternSouth China Sea following Liwan (LW) 3-1 in this area.CNOOC Limited said on December 9th,2009.The Liuhua 34-2-1 well has ability of producing 55 millioncubic feet of natural gas per day.展开更多
文摘On December 2, 2017, the 2nd Seminar on the Development Strategy of China's Oil and Gas Resources was held in Beijing. This seminar was hosted by the Strategic Research Center for Oil and Gas Resources, Ministry of Land (MLR) and Resources and sponsored by both the CNOOC Exploration Department and the School of Ocean and Earth Sciences of Tongji University. With the theme of "deepwater and deep-layer oil and gas resources and development strategy",
文摘The history of China's offshore oil industry can be traced back to late 1950's when geophysical surveys started in limited offshore areas.Then,in 1960's and 1970's,a few exploratory wells scattered from north down to south were drilled resulting in a number of discoveries with the total proven oil in place being merely 40 million tons.In fact,the China's offshore oil industry in a real sence did not emerge on the horizon until early 1980's when China opened its door to outside world and the China National Offshore Oil Corporation(CNOOC)was born.
基金Supported by the 12th Five-Year Project of Science and Technology of China National Offshore Oil Corporation “Development of Underwater Oil Spill Numerical Simulation in Deep Water”(No.CNOOC-KJ 125 ZDXM 00 000 00 NFCY 2011-03)
文摘Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.
基金supported by the National Natural Science Foundation of China(Grant No. 50979113)the High Technology Research and Development Program of China(863 Program,Grant No. 2006AA09A105)
文摘Along with the consumption increase of the petroleum products, more countries have transferred their attentions to the offshore fields, especially the deepwater oil and gas reserves. For deepwater exploitation, the risers must be installed to act as the conduits connecting surface platforms to subsea facilities. In this paper, the typical risers sorted by different classes are introduced, and the correspondent installation methods are presented. By investigating the recent projects performed in the deepwater hot spots, and combining the challenges of HYSY20 l for riser installation, a lifting device developed for assisting riser installation is proposed and detailed to satisfy the installation of deepwater risers in the LW3-1 Gas Field of 1500 m in the South China Sea. Tests on both the functions and performances of such a new system exhibit the satisfaction of meeting all challenging requirements of HYSY201 for application to riser installation in waters up to a depth of 3000 m in the South China Sea.
文摘The oil and gas exploration in offshore China has made great achievements,and as the important areas of offshore exploration,the shallow waters contribute most of the oil and gas reserves and production.However,the available area for exploration is diminishing and the cost of exploration is rising.The field changes and ever increasing difficulties of exploration bring new challenges technically and economically.Therefore,for effective exploration of shallow-water oil and gas in offshore China,it is necessary to center on the general requirements of becoming a powerful marine country and the ideas of value exploration,initiate key research projects in the fields of China's offshore stratigraphic-lithologic reserves,Paleogene reserves,buried-hill reserves,high temperature and pressure reserves and hydrocarbon-rich sags,and form geological theories and explorative technologies of large and medium size oil and gas field in offshore China.The measures regarding the challenges include:(1) Innovating theoretical understanding and optimizing new exploration fields,(2) developing technical capabilities and improving the success rate of exploration,and(3) enhancing management level and deepening value exploration.
基金The work was supported by China National Significant Science and Technology Project(No.2008ZX05025,No.2011ZX05025,No.2016ZX05026)China National Key Basic Research and Development Program(973 Program)(2009CB219400)Project of Ministry of Land and Resources of the People's Republic of China(XQ2004-05,XQ2007-05).
文摘On September 15,2014,China National Offshore Oil Co.,Ltd announced that a high production of oil and gas flow of 1.6106 m3/d was obtained in Well LS17-2-1 in deepwater area in northern South China Sea,which is the first great oil and gas discovery for self-run deepwater exploration in China sea areas,and a strategic breakthrough was made in natural gas exploration in deepwater area of Lingshui sag in Qiongdongnan Basin.Under the combined action of climax of international deepwater exploration,high oil prices,national demands of China,practical needs of exploration,breakthroughs in seismic exploration and testing technologies,innovations in geological cognition and breakthroughs in deepwater operation equipment,Lingshui 17-2 gas field is discovered.Among these factors,the innovation in reservoir forming geological cognition directly promotes the discovery.The quality of seismic data in the early time is poor,so key reservoir forming conditions such as effective source rocks,high quality reservoirs and oil-gas migration pathways are unable to be ascertained;with support of new seismic acquisition and processing technology,some researches show that Lingshui sag is a successive large and deep sag with an area of 5000 km2 and the maximum thickness of Cenozoic stratum of 13 km.In the Early Oligocene,the Lingshui sag was a semi-closed delta-estuarine environment,where the coalmeasure and marine mudstones in Lower Oligocene Yacheng Formation were developed.The Lingshui sag is a sag with high temperature,and the bottom temperature of source rocks in Yacheng Formation can exceed 250C,but the simulation experiment of hydrocarbon generation at high temperature indicates that the main part of this set of source rock is still in the gas-generation window,with resources of nearly 1 trillion cubic meters,so the Lingshui sag is a hydrocarbon-rich generation sag.In the Neogene,the axial canyon channel from the Thu Bon River in Vietnam passed through the Lingshui sag,and five stages of secondary channels were developed in the axial canyon channel,where four types of reservoirs with excellent physical properties including the axial sand,lateral accretion sand,natural levee sand as well as erosion residual sand were developed,and lithologic traps or structural-lithologic traps were formed.The diapiric zone in the southern Lingshui sag connects deep source rocks in Yacheng Formation and shallow sandstones in the channels,and the migration pattern of natural gas is a T-type migration pattern,in other words,the natural gas generated from Yacheng Formation migrates vertically to the interior of the channel sandbody,and then migrates laterally in the channel reservoirs and forms the reservoirs.Innovations of geophysical exploration technologies for complicated geological conditions of deepwater areas are made,such as the detuning comprehensive quantitative amplitude hydrocarbon detection technology,which greatly improves the success rate of deepwater exploration;key technologies of deepwater safety exploratory well testing represented by the platform-dragged riser displacement technology are developed,which greatly reduces the drilling test cost.The above key exploration technologies provide a strong guarantee for the efficient exploration and development of Lingshui gas field.
文摘China National Offshore Oil Corporation (CNOOC) andHusky Oil China Limited have made a new deepwater gasdiscovery,Liuhua (LH) 34-2,which is the second deepwatergas discovery in the Pearl River Mouth Basin in the easternSouth China Sea following Liwan (LW) 3-1 in this area.CNOOC Limited said on December 9th,2009.The Liuhua 34-2-1 well has ability of producing 55 millioncubic feet of natural gas per day.