Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ...Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.展开更多
The dynamic responses of a floating vertical axis wind turbine(VAWT)are assessed on the basis of an aero-hydro-mooring coupled model.The aerodynamic loads on the rotor are acquired with double-multiple stream tube met...The dynamic responses of a floating vertical axis wind turbine(VAWT)are assessed on the basis of an aero-hydro-mooring coupled model.The aerodynamic loads on the rotor are acquired with double-multiple stream tube method.First-and second-order wave loads are calculated on the basis of 3D potential theory.The mooring loads are simulated by catenary theory.The coupled model is established,and a numerical code is programmed to investigate the dynamic response of the semi-submersible VAWT.A model test is then conducted,and the numerical code is validated considering the hydrodynamic performance of the floating buoy.The responses of the floating VAWT are studied through the numerical simulation under the sea states of wind and regular/irregular waves.The effects of the second-order wave force on the motions are also investigated.Results show that the slow-drift responses in surge and pitch motions are significantly excited by the second-order wave forces.Furthermore,the effect of foundation motion on aerodynamic loads is examined.The normal and tangential forces of the blades demonstrate a slight increase due to the coupling effect between the buoy motion and the aerodynamic loads.展开更多
To solve the problem of residual wind power in offshore wind farms,a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of re...To solve the problem of residual wind power in offshore wind farms,a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of residual wind power.By studying the mathematical model of wind power output and calculating surplus wind power,as well as considering the hydrogen production/storage characteristics of the electrolyzer and hydrogen storage tank,an innovative capacity optimization allocation model was established.The objective of the model was to achieve the lowest total net present value over the entire life cycle.The model took into account the cost-benefit breakdown of equipment end-of-life cost,replacement cost,residual value gain,wind abandonment penalty,hydrogen transportation,and environmental value.The MATLAB-based platform invoked the CPLEX commercial solver to solve the model.Combined with the analysis of the annual average wind speed data from an offshore wind farm in Guangdong Province,the optimal capacity configuration results and the actual operation of the hydrogen production system were obtained.Under the calculation scenario,this hydrogen production system could consume 3,800 MWh of residual electricity from offshore wind power each year.It could achieve complete consumption of residual electricity from wind power without incurring the penalty cost of wind power.Additionally,it could produce 66,500 kg of green hydrogen from wind power,resulting in hydrogen sales revenue of 3.63 million RMB.It would also reduce pollutant emissions from coal-based hydrogen production by 1.5 tons and realize an environmental value of 4.83 million RMB.The annual net operating income exceeded 6 million RMB and the whole life cycle NPV income exceeded 50 million RMB.These results verified the feasibility and rationality of the established capacity optimization allocation model.The model could help advance power system planning and operation research and assist offshore wind farm operators in improving economic and environmental benefits.展开更多
Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the pe...Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the performance and operation of the floating offshore wind turbine(FOWT)in comparison to bottom-fixed wind turbines.In this paper,model predictive control(MPC)is utilized to overcome the limitation caused by platform motion.Due to the ease of control synthesis,the MPC is developed using a simplified model instead of high fidelity simulation model.The performance of the controller is verified in the presence of realistic wind and wave disturbances.The study demonstrates the effectiveness of MPC in reducing platform motions and rotor/generator speed regulation of FOWTs.展开更多
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platfo...The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooting system dynamics of the platform were calculated by SESAM soRware. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.展开更多
The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In...The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In this study,the dynamic responses of a 6 MW Spar type FOWT designed for the water depth of 100 m are investigated by means of the wave tank experiment and numerical analysis. A scaled model is manufactured for the experiment at a ratio of65.3, while the numerical model is constructed on the open-source platform FAST(Fatigue, Aerodynamics,Structures, and Turbulence). Still water tests, wind-induced only tests, wave-induced only tests and combined windwave-current tests are all conducted experimentally and numerically. The accuracy of the experimental set-up as well as the loading generation has been verified. Surge, pitch and heave motions are selected to analyze and the numerical results agree well with the experimental values. Even though results obtained by using the FOWT calculation model established in FAST software show some deviations from the test results, the trends are always consistent. Both experimental and numerical studies demonstrate that they are reliable for the designed 6 MW Spar type FOWT.展开更多
The dynamic behavior of floating offshore wind turbine (FOWT) is crucial for its design and optimization. A novel dynamics analysis method for the spar-type FOWT system is proposed in this paper based on the theorem o...The dynamic behavior of floating offshore wind turbine (FOWT) is crucial for its design and optimization. A novel dynamics analysis method for the spar-type FOWT system is proposed in this paper based on the theorem of moment of momentum and the Newton’s second law. The full nonlinearity of the equations of motion (EOMs) and the full nonlinear coupling between external loads and the motions are preserved in this method. Compared with the conventional methods, this method is more transparent and it can be applied directly to the large-amplitude rotation cases. An in-house code is developed to implement this method. The capability of in-house code is verified by comparing its simulation results with those predicted by FAST. Based on the in-house code, the dynamic responses of a spar-type FOWT system are investigated under various conditions.展开更多
Numerical investigations of floating platforms with different outer column inclined angles under two operating conditions of regular wave and irregular wave are presented in this paper.A coupled aero-hydrodynamic comp...Numerical investigations of floating platforms with different outer column inclined angles under two operating conditions of regular wave and irregular wave are presented in this paper.A coupled aero-hydrodynamic computational fluid dynamics in-house solver FOWT-UALM-SJTU is applied for the calculation.First,the validation for wave and wind generation are conducted to determine mesh distribution strategy.Based on these,the hydrodynamic motion response,aerodynamic performance and wake flow are analyzed to explore the impact of inclined angle.Conduct spectral analysis on the motion response under wave action,discuss the aerodynamic attack angle and inflow wind velocity along the blade spanwise direction in detail,reveal different trends in wake development and recovery.The results show that for the regular wave condition with the increase of inclined angles,the equilibrium position of surge motion is constantly rising,while pitch is decreasing.The maximum root mean square(rms)value occurs at angle=30°,compared with the original OC4 FOWT,the rms in power and thrust increase 0.35%,0.71%.And there are two low regions of attack angle and high regions of axial inflow velocity,corresponding to aerodynamic loads.The spectral analysis indicates that the natural frequency of pitch motion will increase with inclined angle.Besides,from the middle to far region of wake flow,the velocity recovery of FOWT with inclined angle will become faster,which is beneficial for downstream turbines to enhance more wind energy.展开更多
To realize the application of the floating offshore wind turbine(FOWT)from deep to relatively shallow waters,a new concept of multi-column floating wind turbine platform with low center of gravity(CG)is designed and v...To realize the application of the floating offshore wind turbine(FOWT)from deep to relatively shallow waters,a new concept of multi-column floating wind turbine platform with low center of gravity(CG)is designed and validated.The multi-column low CG platform is designed to support a 6MW wind turbine class and operated at a water depth of 50m in the South China Sea.The frequency domain software WADAM and time domain software NREL-FAST are used to simulate coupled dynamic responses of the floating wind turbine system with second-order wave loads considering.The dynamic behaviors of multi-column low CG FOWT system under normal operation and parked conditions are presented.The influence of second-order wave force on the motion responses of the multi-column platform,fore-aft force and moment of the tower base and mooring force are researched respectively.The results demonstrate that the coupled dynamic responses at rated operating condition and extreme condition meet the normal operating requirements and extreme survival requirements of FOWT system in the shallow water(50m)of South China Sea.In addition,it is found that,the wave frequency response gradually replaces the second-order low frequency response as the main influencing factor of the coupled dynamic response of the FOWT system with the increasing severity of the sea states.However,in general,the magnitude of second-order low frequency response increases with the increasing severity of the design load case.Thus,in the subsequent design of the shallow water FOWT system,the second-order effects should be paid enough attention.展开更多
According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to s...According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to simulate the wind turbine, while a similarity calculation method is applied be- tween the small and large wind turbine. A fixed displacement pump-variable motor closed loop is used as the main transmission system, and a self-excited synchronous generator generates electricity through the grid connection. The experiment and simulation study on the speed and power control of the hydraulic wind turbine is conducted, based on the experimental platform, thus correctness and progressiveness of the experiment platform is further verified. The experimental platform study lays a foundation for further research on the characteristics of hydraulic wind turhln~展开更多
This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bo...This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bodies that receive the wave energy,actuators that convert the wave energy into electrical energy and generate the mechanical forces,and rigid bars that connect the floating bodies and the wind turbine platform and deliver the actuator forces to the platform.The rotational torques that are required to minimize the platform pitch and roll motions are determined using a linear quadratic regulator.The torques determined in this manner are realized through the actuator forces that maximize the wave power capture as well.The performance of the proposed wave energy converter in simultaneously suppressing the platform pitch and roll motions and extracting the wave energy is validated through simulations.展开更多
基金funded by the Key Technology Research and Development Program(Nos.2022YFB4201301,and 2022YFB4201304)the National Natural Science Foundation of China(Nos.52101333,52071058,51939002,and 52071301)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ21E090009)supported by the Natural Science Foundation of Liaoning Province(No.2022-KF-18-01)the special funds for Promoting High-Quality Development from the Department of Natural Resources of Guangdong Province(No.GDNRC[2020]016).
文摘Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.
基金The study is supported by the National Natural Science Foundation of China(No.51879190)the Tianjin Research Innovation Project for Postgraduate Students(No.2021YJSB185).
文摘The dynamic responses of a floating vertical axis wind turbine(VAWT)are assessed on the basis of an aero-hydro-mooring coupled model.The aerodynamic loads on the rotor are acquired with double-multiple stream tube method.First-and second-order wave loads are calculated on the basis of 3D potential theory.The mooring loads are simulated by catenary theory.The coupled model is established,and a numerical code is programmed to investigate the dynamic response of the semi-submersible VAWT.A model test is then conducted,and the numerical code is validated considering the hydrodynamic performance of the floating buoy.The responses of the floating VAWT are studied through the numerical simulation under the sea states of wind and regular/irregular waves.The effects of the second-order wave force on the motions are also investigated.Results show that the slow-drift responses in surge and pitch motions are significantly excited by the second-order wave forces.Furthermore,the effect of foundation motion on aerodynamic loads is examined.The normal and tangential forces of the blades demonstrate a slight increase due to the coupling effect between the buoy motion and the aerodynamic loads.
基金supported by Manage Innovation Project of China Southern Power Grid Co.,Ltd.(No.GZHKJXM20210232).
文摘To solve the problem of residual wind power in offshore wind farms,a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of residual wind power.By studying the mathematical model of wind power output and calculating surplus wind power,as well as considering the hydrogen production/storage characteristics of the electrolyzer and hydrogen storage tank,an innovative capacity optimization allocation model was established.The objective of the model was to achieve the lowest total net present value over the entire life cycle.The model took into account the cost-benefit breakdown of equipment end-of-life cost,replacement cost,residual value gain,wind abandonment penalty,hydrogen transportation,and environmental value.The MATLAB-based platform invoked the CPLEX commercial solver to solve the model.Combined with the analysis of the annual average wind speed data from an offshore wind farm in Guangdong Province,the optimal capacity configuration results and the actual operation of the hydrogen production system were obtained.Under the calculation scenario,this hydrogen production system could consume 3,800 MWh of residual electricity from offshore wind power each year.It could achieve complete consumption of residual electricity from wind power without incurring the penalty cost of wind power.Additionally,it could produce 66,500 kg of green hydrogen from wind power,resulting in hydrogen sales revenue of 3.63 million RMB.It would also reduce pollutant emissions from coal-based hydrogen production by 1.5 tons and realize an environmental value of 4.83 million RMB.The annual net operating income exceeded 6 million RMB and the whole life cycle NPV income exceeded 50 million RMB.These results verified the feasibility and rationality of the established capacity optimization allocation model.The model could help advance power system planning and operation research and assist offshore wind farm operators in improving economic and environmental benefits.
基金supported by Ministry of Science and Technology of China(No.2017YFE0132000).
文摘Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the performance and operation of the floating offshore wind turbine(FOWT)in comparison to bottom-fixed wind turbines.In this paper,model predictive control(MPC)is utilized to overcome the limitation caused by platform motion.Due to the ease of control synthesis,the MPC is developed using a simplified model instead of high fidelity simulation model.The performance of the controller is verified in the presence of realistic wind and wave disturbances.The study demonstrates the effectiveness of MPC in reducing platform motions and rotor/generator speed regulation of FOWTs.
基金Foundation item: Supported by the 111 Project under Grant No.B07019, and the National Natural Science Foundation of China under Grant No.50979020.
文摘The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooting system dynamics of the platform were calculated by SESAM soRware. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51809170 and 51879160)the National Key R&D Program of China (Grant No. 2019YFB1503700)+1 种基金Program for Intergovernmental International S&T Cooperation Projects of Shanghai Municipality (Grant Nos.19160713600 and 18160744000)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant Nos. ZXDF010037 and ZXDF010040)。
文摘The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In this study,the dynamic responses of a 6 MW Spar type FOWT designed for the water depth of 100 m are investigated by means of the wave tank experiment and numerical analysis. A scaled model is manufactured for the experiment at a ratio of65.3, while the numerical model is constructed on the open-source platform FAST(Fatigue, Aerodynamics,Structures, and Turbulence). Still water tests, wind-induced only tests, wave-induced only tests and combined windwave-current tests are all conducted experimentally and numerically. The accuracy of the experimental set-up as well as the loading generation has been verified. Surge, pitch and heave motions are selected to analyze and the numerical results agree well with the experimental values. Even though results obtained by using the FOWT calculation model established in FAST software show some deviations from the test results, the trends are always consistent. Both experimental and numerical studies demonstrate that they are reliable for the designed 6 MW Spar type FOWT.
基金financially supported by the National Natural Science Foundation of China(Grant No.11632011)
文摘The dynamic behavior of floating offshore wind turbine (FOWT) is crucial for its design and optimization. A novel dynamics analysis method for the spar-type FOWT system is proposed in this paper based on the theorem of moment of momentum and the Newton’s second law. The full nonlinearity of the equations of motion (EOMs) and the full nonlinear coupling between external loads and the motions are preserved in this method. Compared with the conventional methods, this method is more transparent and it can be applied directly to the large-amplitude rotation cases. An in-house code is developed to implement this method. The capability of in-house code is verified by comparing its simulation results with those predicted by FAST. Based on the in-house code, the dynamic responses of a spar-type FOWT system are investigated under various conditions.
基金Project supported by the National Natural Science Foundation of China (Grant No.52131102).
文摘Numerical investigations of floating platforms with different outer column inclined angles under two operating conditions of regular wave and irregular wave are presented in this paper.A coupled aero-hydrodynamic computational fluid dynamics in-house solver FOWT-UALM-SJTU is applied for the calculation.First,the validation for wave and wind generation are conducted to determine mesh distribution strategy.Based on these,the hydrodynamic motion response,aerodynamic performance and wake flow are analyzed to explore the impact of inclined angle.Conduct spectral analysis on the motion response under wave action,discuss the aerodynamic attack angle and inflow wind velocity along the blade spanwise direction in detail,reveal different trends in wake development and recovery.The results show that for the regular wave condition with the increase of inclined angles,the equilibrium position of surge motion is constantly rising,while pitch is decreasing.The maximum root mean square(rms)value occurs at angle=30°,compared with the original OC4 FOWT,the rms in power and thrust increase 0.35%,0.71%.And there are two low regions of attack angle and high regions of axial inflow velocity,corresponding to aerodynamic loads.The spectral analysis indicates that the natural frequency of pitch motion will increase with inclined angle.Besides,from the middle to far region of wake flow,the velocity recovery of FOWT with inclined angle will become faster,which is beneficial for downstream turbines to enhance more wind energy.
基金support from the National Natural Science Foundation of China (No.51809170 and No.12102210)State Key Laboratory of Ocean Engi-neering (No.GKZD010081)Programfor International Coopera-tion of Shanghai Science and Technology (No.18160744000).
文摘To realize the application of the floating offshore wind turbine(FOWT)from deep to relatively shallow waters,a new concept of multi-column floating wind turbine platform with low center of gravity(CG)is designed and validated.The multi-column low CG platform is designed to support a 6MW wind turbine class and operated at a water depth of 50m in the South China Sea.The frequency domain software WADAM and time domain software NREL-FAST are used to simulate coupled dynamic responses of the floating wind turbine system with second-order wave loads considering.The dynamic behaviors of multi-column low CG FOWT system under normal operation and parked conditions are presented.The influence of second-order wave force on the motion responses of the multi-column platform,fore-aft force and moment of the tower base and mooring force are researched respectively.The results demonstrate that the coupled dynamic responses at rated operating condition and extreme condition meet the normal operating requirements and extreme survival requirements of FOWT system in the shallow water(50m)of South China Sea.In addition,it is found that,the wave frequency response gradually replaces the second-order low frequency response as the main influencing factor of the coupled dynamic response of the FOWT system with the increasing severity of the sea states.However,in general,the magnitude of second-order low frequency response increases with the increasing severity of the design load case.Thus,in the subsequent design of the shallow water FOWT system,the second-order effects should be paid enough attention.
基金Supported by the National Key Basic Research Development Program of China(No.2014CB046405)the National Natural Science Foundation of China(No.51475406,51405423)the Hebei Youth Fund(No.QN20132017)
文摘According to a research on the 30kVA simulation experimental platform of hydraulic wind tur- bine, its basic structure, composition and operation principle are expounded in this paper. An in- verter motor is used to simulate the wind turbine, while a similarity calculation method is applied be- tween the small and large wind turbine. A fixed displacement pump-variable motor closed loop is used as the main transmission system, and a self-excited synchronous generator generates electricity through the grid connection. The experiment and simulation study on the speed and power control of the hydraulic wind turbine is conducted, based on the experimental platform, thus correctness and progressiveness of the experiment platform is further verified. The experimental platform study lays a foundation for further research on the characteristics of hydraulic wind turhln~
文摘This paper proposes a new concept of an actively-controlled wave energy converter for suppressing the pitch and roll motions of floating offshore wind turbines.The wave energy converter consists of several floating bodies that receive the wave energy,actuators that convert the wave energy into electrical energy and generate the mechanical forces,and rigid bars that connect the floating bodies and the wind turbine platform and deliver the actuator forces to the platform.The rotational torques that are required to minimize the platform pitch and roll motions are determined using a linear quadratic regulator.The torques determined in this manner are realized through the actuator forces that maximize the wave power capture as well.The performance of the proposed wave energy converter in simultaneously suppressing the platform pitch and roll motions and extracting the wave energy is validated through simulations.