There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly aff...There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.展开更多
The development of offshore wind farms has experienced rapid growth during the past decade. In particular, China has the highest number of installations worldwide, but some challenges exist for further development. Co...The development of offshore wind farms has experienced rapid growth during the past decade. In particular, China has the highest number of installations worldwide, but some challenges exist for further development. Consequently, some researchers suggest combining wave energy with offshore wind energy. To fully implement this plan, a comprehensive resource assessment of combined offshore wind and wave energy systems is needed. Investigations of the parameters, such as the spatial and temporal distribution of wind and wave energy, aggregate resource reserves, available technical potential, and total capacity factor, are vital for designing the required wind turbines and wave energy converters. To assist scientific development and governmental decision making, this paper aims to evaluate offshore wind and wave energy resources from a technological perspective. The results show that theoretical offshore wind and wave energy resources are abundant in China's ocean territory, with a potential of approximately 3 TW. Technically, of the three most popular offshore wind turbines, i.e., 6, 8, and 10 MW, 10 MW is overall the most suitable in China. However, of the three wave energy converters, i.e., 120, 250, and 750 kW, 120 kW is the best candidate for Liaoning Province, and 750 kW is the most suitable for the remainder of its region. Overall, the total annual energy production is approximately 7000 TWh.展开更多
基金financially supported by the Major Science and Technology Project of MOT,China(Grant Nos.2013 328 224 070 and 2014 328 224 040)the National Natural Science Foundation of China(Grant No.51409134)
文摘There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.
基金provided by the National Marine Renewable Energy Programs of Chinasupported by the National Key R&D Program of China(Grant No.2017YFE0132000)the National Natural Science Foundation of China(Grant Nos.52078251 and 42276228)。
文摘The development of offshore wind farms has experienced rapid growth during the past decade. In particular, China has the highest number of installations worldwide, but some challenges exist for further development. Consequently, some researchers suggest combining wave energy with offshore wind energy. To fully implement this plan, a comprehensive resource assessment of combined offshore wind and wave energy systems is needed. Investigations of the parameters, such as the spatial and temporal distribution of wind and wave energy, aggregate resource reserves, available technical potential, and total capacity factor, are vital for designing the required wind turbines and wave energy converters. To assist scientific development and governmental decision making, this paper aims to evaluate offshore wind and wave energy resources from a technological perspective. The results show that theoretical offshore wind and wave energy resources are abundant in China's ocean territory, with a potential of approximately 3 TW. Technically, of the three most popular offshore wind turbines, i.e., 6, 8, and 10 MW, 10 MW is overall the most suitable in China. However, of the three wave energy converters, i.e., 120, 250, and 750 kW, 120 kW is the best candidate for Liaoning Province, and 750 kW is the most suitable for the remainder of its region. Overall, the total annual energy production is approximately 7000 TWh.