The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b...The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.展开更多
In this study, we apply geochemical and statistical analyses to evaluate the source rocks and kerogen type of Cretaceous sediments from the Cote d’Ivoire sedimentary basin. The geochemical analysis includes pyrolysis...In this study, we apply geochemical and statistical analyses to evaluate the source rocks and kerogen type of Cretaceous sediments from the Cote d’Ivoire sedimentary basin. The geochemical analysis includes pyrolysis data such as total organic carbon (TOC%), generation source potential (S2) and hydrogen index (HI). The results of the cluster analysis separated the source rocks in the study area into two main groups. 1) Source rocks characterized by HI > 300 (mg/g), TOC from 1.76% to 3.19% by weight, and S2 from 6.55 to 14.46 (mg/g), indicating good to excellent source rocks with type II kerogen and are capable of generating oil. 2) Source rocks characterized by HI between 200 and 300 (mg/g), TOC from 1.6 to 2.02 wt%, and S2 from 3.45 to 5.36 (mg/g) indicating medium to good source rocks with type II-III kerogen and capable of generating a mixture of oil and gas.展开更多
Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehend...Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehending scouring mechanisms,notable complexities persist,specifically with newer foundation types.Addressing these limitations is vital for advancing our understanding of scour mechanisms and for improving mitigation strategies in offshore wind energy development.This review synthesizes current findings on local scour across various offshore foundations,encompassing field observations,data-driven approaches,turbulence-sediment interactions,scour evolution processes,influencing factors,and numerical model advancements.The objective is to enrich our understanding of local scour mechanisms.In addition,future research directions are outlined,including the development of robust arti-ficial intelligence models for accurate predictions,the exploration of vortex structure characteristics,and the refinement of numerical models to strengthen prediction capabilities while minimizing computational efforts.展开更多
This research is the first application of Unmanned Aerial Vehicles(UAVs)equipped with Multi-access Edge Computing(MEC)servers to offshore wind farms,providing a new task offloading solution to address the challenge of...This research is the first application of Unmanned Aerial Vehicles(UAVs)equipped with Multi-access Edge Computing(MEC)servers to offshore wind farms,providing a new task offloading solution to address the challenge of scarce edge servers in offshore wind farms.The proposed strategy is to offload the computational tasks in this scenario to other MEC servers and compute them proportionally,which effectively reduces the computational pressure on local MEC servers when wind turbine data are abnormal.Finally,the task offloading problem is modeled as a multi-intelligent deep reinforcement learning problem,and a task offloading model based on MultiAgent Deep Reinforcement Learning(MADRL)is established.The Adaptive Genetic Algorithm(AGA)is used to explore the action space of the Deep Deterministic Policy Gradient(DDPG),which effectively solves the problem of slow convergence of the DDPG algorithm in the high-dimensional action space.The simulation results show that the proposed algorithm,AGA-DDPG,saves approximately 61.8%,55%,21%,and 33%of the overall overhead compared to local MEC,random offloading,TD3,and DDPG,respectively.The proposed strategy is potentially important for improving real-time monitoring,big data analysis,and predictive maintenance of offshore wind farm operation and maintenance systems.展开更多
Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substant...Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substantial concern associated with this technology. This study introduces an innovative approach for establishing OCGS leakage scenarios, involving four pivotal stages, namely, interactive matrix establishment, risk matrix evaluation, cause–effect analysis, and scenario development, which has been implemented in the Pearl River Estuary Basin in China. The initial phase encompassed the establishment of an interaction matrix for OCGS systems based on features, events, and processes. Subsequent risk matrix evaluation and cause–effect analysis identified key system components, specifically CO_(2) injection and faults/features. Building upon this analysis, two leakage risk scenarios were successfully developed, accompanied by the corresponding mitigation measures. In addition, this study introduces the application of scenario development to risk assessment, including scenario numerical simulation and quantitative assessment. Overall, this research positively contributes to the sustainable development and safe operation of OCGS projects and holds potential for further refinement and broader application to diverse geographical environments and project requirements. This comprehensive study provides valuable insights into the establishment of OCGS leakage scenarios and demonstrates their practical application to risk assessment, laying the foundation for promoting the sustainable development and safe operation of ocean CO_(2) geological storage projects while proposing possibilities for future improvements and broader applications to different contexts.展开更多
The tests performed with two hundred and thirty-nine (239) samples from the A-X and B-X drillings help to know their sedimentological and chemostratigraphic characters. In sedimentological term formations are composed...The tests performed with two hundred and thirty-nine (239) samples from the A-X and B-X drillings help to know their sedimentological and chemostratigraphic characters. In sedimentological term formations are composed of sand, sandstone, limestone, siltstone and argillite that alternate along the drill. In chemostratigraphic term two megasequences (MS1 and MS2) have been identified. A correlation of chemostratigraphic data completed by the lithology results allowed a subdivision of oil wells that shows two main types of deposits environments. First, a proximal marine environment to continental and to Albian marked by a detrital flow deducted from the concentrations evolution of indicator elements of terrigenous material that are K, Mg, and Rb. On the other hand, a deep to shallow marine environment of Cenomanian to Paleocene marked by the presence of predominantly clay sediments and abundant glauconite in the lower Senonian. Nevertheless, there is a transition or intermediate environment that is characterized by the presence of glauconite and detrital flows.展开更多
Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexib...Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.展开更多
Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the c...Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.展开更多
This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,...This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,blades,tower and other components(nacelle,hub,bedplate,etc.)has been explicitly established.The effects of pile−soil interaction,controller and operational conditions on the turbine dynamic responses are studied systematically in time domain and frequency domain.The results show that(1)a comprehensive drivetrain model has the capability to provide a more precise representation of the complex dynamic characteristics exhibited by drivetrain components,which can be used as the basis for further study on the dynamic characteristics of the drivetrain.(2)The pile−soil interaction can influence the wind turbine dynamic responses,particularly under the parked condition.(3)The effect of the pile−soil interaction on tower responses is more significant than that on blade responses.(4)The use of the controller can substantially affect the rotor characteristics,which in turn influences the turbine dynamic responses.(5)The tower and blade displacements under the operational condition are much larger than those under the parked condition.The model and methodology presented in this study demonstrate potential for examining complex dynamic behaviors of the monopile OWTs.To ensure accuracy and precision,it is imperative to construct a detailed model of the wind turbine system,while also taking into account simulation efficiency.展开更多
As offshore wind farms expand into deeper and farther ocean regions and the unit capacity of offshore wind turbines(OWTs)increases,there is a pressing need for a new foundation structure that can accommodate deep-sea ...As offshore wind farms expand into deeper and farther ocean regions and the unit capacity of offshore wind turbines(OWTs)increases,there is a pressing need for a new foundation structure that can accommodate deep-sea conditions and support large capacities while maintaining economical and safe.To meet this goal of integrated transportation and one-step installation,a novel five-bucket jacket foundation(FBJF),with its suction installation and leveling methods in sand,has been proposed,analyzed and experimentally studied.First,seepage failure experiments of the FBJF at various depths were conducted,and a formula for calculating the critical suction of seepage failure suitable for the FBJF in sand was chosen and recommended for use with a range of values for the permeability coefficient ratio.Second,through leveling experiments of the FBJF at different depths,the maximum adjustable leveling angle during the sinking process was defined using seepage failure and the adjustable leveling angle of the foundation as control criteria.Various leveling control strategies were proposed and verified.Finally,an automatic sinking and leveling control system for the FBJF was developed and experimentally verified for feasibility.展开更多
The ocean serves as a vital carrier for human resource development and economic growth and contains rich mineral resources such as oil,natural gas,polymetallic nodules,cobalt-rich ferromanganese crusts,polymetallic su...The ocean serves as a vital carrier for human resource development and economic growth and contains rich mineral resources such as oil,natural gas,polymetallic nodules,cobalt-rich ferromanganese crusts,polymetallic sulfides,and rare earth ore.Moreover,the ocean has wealthy reserves of wind,wave,tidal,and solar energy,making it an essential strategic space for sustainable future development.However,offshore structures are complex.展开更多
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque...Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.展开更多
Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ...Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.展开更多
The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_...The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.展开更多
The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling anal...The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees.展开更多
The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in...The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in petroleum system modelling(PSM)in the oil industry for calibration purposes.Th representing the minimum temperature of fluid entrapment estimated from fluid-inclusion study provides extra support to build the thermal models for PSM.Fluid inclusion parameters along with Rock-Eval pyrolysis analysis have been used to predict the maturity of oil in terms of API gravity as well as the maturity of source rocks respectively.Two exploratory wells RV-1(Mumbai Offshore Basin)and KK4C-A-1(Kerala-Konkan Offshore Basin),India were examined and the T_(h)from most of the fluid inclusions of wells RV-1 and KK4C-A-1 fell in the oil window range of 60-140℃suggesting thermal conditions favourable for oil generation in both of the wells.T_(h)of coeval aqueous inclusions along with the Hydrocarbon Fluid inclusions(HCFIs)was used to calibrate PSM.Vital parameters show that source rocks of well RV-1 are mature and that of well KK4C-A-1 are immature.Two sets of PSM are created in terms of generation and expulsion for the dry wells RV-1 and KK4C-A-1 and calibrated each well using fluid inclusion Th and BHT.From the fluid inclusion analysis method,it is evident that hydrocarbon generation happened in both wells and the paleo-temperature indicates that the formations of both wells were subjected to temperatures in the oil window range,even though it was designated as dry wells in the present scenario.The present study highlights the application of fluid inclusion paleo-temperature(Th)during calibration instead of commonly used methods.We could obtain desirable and accurate data output from PSM using T_(h) calibration.展开更多
Limestone is one of the essential raw materials in the cement,paint,steel,ceramic,glass,chemical,pharmaceutical,paper,and fertilizer industries.In India,only 8%of the limestone resources are placed under the reserve c...Limestone is one of the essential raw materials in the cement,paint,steel,ceramic,glass,chemical,pharmaceutical,paper,and fertilizer industries.In India,only 8%of the limestone resources are placed under the reserve category,of which 97%is of cement grade.Thus,India depends on imports to bridge the demand‐supply gap of steel,blast furnace,and chemical‐grade limestone.Efforts of Geological Survey of India(GSI)to locate alternate sources for limestone led to the discovery of enormous quantities of carbonate minerals called limemud from the continental shelf margin of the west coast of India.GSI carried out systematic studies to explore the nature of the disposition,quality,quantity,and suitability of the offshore limemud for various industrial applications.A preliminary estimate of resources using high‐resolution subbottom profiling and sediment core sample studies established the occurrence of more than 172 billion tonnes of high‐grade(The content of CaCO3 is greater than 80 wt%)limemud in 0.4–28.0m thick stratified sediment layers spread over an area of 18000 km2.Chemical,physical,mineralogical,beneficiation,and agglomeration studies found the offshore limemud as a potential replacement for limestone in the cement,filler,blast furnace,steel melting shop,lime production,paint,and Grade‐I steel industries.An assessment of mining and transportation costs indicates that the offshore limemud(USD 5–6/ton)is more cost‐effective than that imported from other countries(USD16‐18/ton).With several advantageous factors like low impurity,mode of occurrence in overburden‐free stratified form,fine‐grained slurry nature,and shallow water depth,sustainable mining of offshore limemud could be a future reality with controllable technological,economic,and environmental challenges.展开更多
Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest f...Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest from scientists and practitioners, though it is recognized as one of the weakest points of EIA systems globally. Also, EIA follow-up is influenced by the context, mainly in terms of the types of projects or activities and their related impacts on the environment. Therefore, the present paper is focused on the investigation of the follow-up stage applied to the activity of seismic survey coupled with offshore oil & gas exploitation in Brazil. Research was based on a qualitative approach that included document analysis and semi-structured interviews with analysts involved in EIA processes, and sought to generate evidence of effectiveness of the EIA follow-up as conducted by the Federal Environment Agency (Ibama) in order to situate the practice of follow-up in the broader context of international best practice principles. Based on the findings, it was concluded that, due to the peculiarities of offshore seismic survey, it is necessary to promote adaptations in the procedures for monitoring impacts in order to ensure proper alignment with the principles and conceptual foundations that guide EIA practice. Specifically, the timing of the execution of the activity imposes challenges for its integration into the “conventional” cycle that has guided the monitoring of the impacts in the EIA of projects.展开更多
The oceans'vast expanse has given rise to copious oil and gas resources,with recent years witnessing a steady unlocking of offshore oil and gas potential,positioning them as a key successor in global energy reserv...The oceans'vast expanse has given rise to copious oil and gas resources,with recent years witnessing a steady unlocking of offshore oil and gas potential,positioning them as a key successor in global energy reserves.Currently,offshore oil and gas extraction constitutes nearly a third of the world's oil and gas output.This segment has evolved into a mutually beneficial ecosystem where operators and service providers collaborate closely around exploration and development activities.Investment in offshore oil and gas typically follows a dual "one-third’"pattern,reflecting high upfront costs but promising returns.It also underscores the stark variations in project viability and regional economic efficiency,with monopolistic traits seen at both national and corporate levels.Collaboration has emerged as a key tactic for resource-rich countries and oil companies to advance their offshore ventures.Given the distinct nature of offshore oil and gas development,Chinese oil companies are advised to seize opportunities in marine exploration,emphasize the coordination and planning abilities of the global supply chain,focus on the reserves of offshore oil and gas development technologies,as well as the capabilities of commercial talents and other forms of support,courageously pursue significant offshore assets,and effectively utilize global technology,equipment,and expertise,and rapidly build a competitive edge in offshore oil and gas projects.展开更多
This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include o...This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.展开更多
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200705)the National Natural Science Foundation of China(Grant No.52109146)。
文摘The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.
文摘In this study, we apply geochemical and statistical analyses to evaluate the source rocks and kerogen type of Cretaceous sediments from the Cote d’Ivoire sedimentary basin. The geochemical analysis includes pyrolysis data such as total organic carbon (TOC%), generation source potential (S2) and hydrogen index (HI). The results of the cluster analysis separated the source rocks in the study area into two main groups. 1) Source rocks characterized by HI > 300 (mg/g), TOC from 1.76% to 3.19% by weight, and S2 from 6.55 to 14.46 (mg/g), indicating good to excellent source rocks with type II kerogen and are capable of generating oil. 2) Source rocks characterized by HI between 200 and 300 (mg/g), TOC from 1.6 to 2.02 wt%, and S2 from 3.45 to 5.36 (mg/g) indicating medium to good source rocks with type II-III kerogen and capable of generating a mixture of oil and gas.
基金financially supported by the National Natural Science Foundation of China(No.52301326)the China Postdoctoral Science Foundation(No.2023M731999)the Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2024KFKT017).
文摘Local scour around offshore wind turbine foundations presents a considerable challenge due to its potential influence on structural stability,driven by hydrodynamic forces.While research has made strides in comprehending scouring mechanisms,notable complexities persist,specifically with newer foundation types.Addressing these limitations is vital for advancing our understanding of scour mechanisms and for improving mitigation strategies in offshore wind energy development.This review synthesizes current findings on local scour across various offshore foundations,encompassing field observations,data-driven approaches,turbulence-sediment interactions,scour evolution processes,influencing factors,and numerical model advancements.The objective is to enrich our understanding of local scour mechanisms.In addition,future research directions are outlined,including the development of robust arti-ficial intelligence models for accurate predictions,the exploration of vortex structure characteristics,and the refinement of numerical models to strengthen prediction capabilities while minimizing computational efforts.
基金supported in part by the National Natural Science Foundation of China under grant 61861007the Guizhou Province Science and Technology Planning Project ZK[2021]303+2 种基金the Guizhou Province Science Technology Support Plan under grant[2022]264,[2023]096,[2023]409 and[2023]412the Science Technology Project of POWERCHINA Guizhou Engineering Co.,Ltd.(DJ-ZDXM-2022-44)the Project of POWERCHINA Guiyang Engineering Corporation Limited(YJ2022-12).
文摘This research is the first application of Unmanned Aerial Vehicles(UAVs)equipped with Multi-access Edge Computing(MEC)servers to offshore wind farms,providing a new task offloading solution to address the challenge of scarce edge servers in offshore wind farms.The proposed strategy is to offload the computational tasks in this scenario to other MEC servers and compute them proportionally,which effectively reduces the computational pressure on local MEC servers when wind turbine data are abnormal.Finally,the task offloading problem is modeled as a multi-intelligent deep reinforcement learning problem,and a task offloading model based on MultiAgent Deep Reinforcement Learning(MADRL)is established.The Adaptive Genetic Algorithm(AGA)is used to explore the action space of the Deep Deterministic Policy Gradient(DDPG),which effectively solves the problem of slow convergence of the DDPG algorithm in the high-dimensional action space.The simulation results show that the proposed algorithm,AGA-DDPG,saves approximately 61.8%,55%,21%,and 33%of the overall overhead compared to local MEC,random offloading,TD3,and DDPG,respectively.The proposed strategy is potentially important for improving real-time monitoring,big data analysis,and predictive maintenance of offshore wind farm operation and maintenance systems.
文摘Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substantial concern associated with this technology. This study introduces an innovative approach for establishing OCGS leakage scenarios, involving four pivotal stages, namely, interactive matrix establishment, risk matrix evaluation, cause–effect analysis, and scenario development, which has been implemented in the Pearl River Estuary Basin in China. The initial phase encompassed the establishment of an interaction matrix for OCGS systems based on features, events, and processes. Subsequent risk matrix evaluation and cause–effect analysis identified key system components, specifically CO_(2) injection and faults/features. Building upon this analysis, two leakage risk scenarios were successfully developed, accompanied by the corresponding mitigation measures. In addition, this study introduces the application of scenario development to risk assessment, including scenario numerical simulation and quantitative assessment. Overall, this research positively contributes to the sustainable development and safe operation of OCGS projects and holds potential for further refinement and broader application to diverse geographical environments and project requirements. This comprehensive study provides valuable insights into the establishment of OCGS leakage scenarios and demonstrates their practical application to risk assessment, laying the foundation for promoting the sustainable development and safe operation of ocean CO_(2) geological storage projects while proposing possibilities for future improvements and broader applications to different contexts.
文摘The tests performed with two hundred and thirty-nine (239) samples from the A-X and B-X drillings help to know their sedimentological and chemostratigraphic characters. In sedimentological term formations are composed of sand, sandstone, limestone, siltstone and argillite that alternate along the drill. In chemostratigraphic term two megasequences (MS1 and MS2) have been identified. A correlation of chemostratigraphic data completed by the lithology results allowed a subdivision of oil wells that shows two main types of deposits environments. First, a proximal marine environment to continental and to Albian marked by a detrital flow deducted from the concentrations evolution of indicator elements of terrigenous material that are K, Mg, and Rb. On the other hand, a deep to shallow marine environment of Cenomanian to Paleocene marked by the presence of predominantly clay sediments and abundant glauconite in the lower Senonian. Nevertheless, there is a transition or intermediate environment that is characterized by the presence of glauconite and detrital flows.
基金supported by the Natural Science Research Project of Guangling College of Yangzhou University,China (ZKZD18004)General Program of Natural Science Research in Higher Education Institutions of Jiangsu Province,China (20KJD430006)。
文摘Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.
基金Supported by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (2019BT02H594)Sanya Technology Innovation Special Project (2022KJCX08)。
文摘Offshore carbon dioxide(CO_(2)) storage is an effective method for reducing greenhouse gas emissions. However, when using traditional seismic wave methods to monitor the migration of sequestration CO_(2) plumes, the characteristics of wave velocity changes tend to become insignificant beyond a certain limit. In contrast, the controllable source electromagnetic method(CSEM) remains highly sensitive to resistivity changes. By simulating different CO_(2) plume migration conditions, we established the relevant models and calculated the corresponding electric field response characteristic curves, allowing us to analyze the CSEM's ability to monitor CO_(2) plumes. We considered potential scenarios for the migration and diffusion of offshore CO_(2) storage, including various burial depths, vertical extension diffusion, lateral extension diffusion,multiple combinations of lateral intervals, and electric field components. We also obtained differences in resistivity inversion imaging obtained by CSEM to evaluate its feasibility in monitoring and to analyze all the electric field(Ex, Ey, and Ez) response characteristics. CSEM has great potential in monitoring CO_(2) plume migration in offshore saltwater reservoirs due to its high sensitivity and accuracy. Furthermore, changes in electromagnetic field response reflect the transport status of CO_(2) plumes, providing an important basis for monitoring and evaluating CO_(2)transport behavior during storage processes.
基金supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant Nos.KJQN202101133 and KJQN202301105)Scientific Research Foundation of Chongqing University of Technology(Grant No.2020ZDZ023).
文摘This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,blades,tower and other components(nacelle,hub,bedplate,etc.)has been explicitly established.The effects of pile−soil interaction,controller and operational conditions on the turbine dynamic responses are studied systematically in time domain and frequency domain.The results show that(1)a comprehensive drivetrain model has the capability to provide a more precise representation of the complex dynamic characteristics exhibited by drivetrain components,which can be used as the basis for further study on the dynamic characteristics of the drivetrain.(2)The pile−soil interaction can influence the wind turbine dynamic responses,particularly under the parked condition.(3)The effect of the pile−soil interaction on tower responses is more significant than that on blade responses.(4)The use of the controller can substantially affect the rotor characteristics,which in turn influences the turbine dynamic responses.(5)The tower and blade displacements under the operational condition are much larger than those under the parked condition.The model and methodology presented in this study demonstrate potential for examining complex dynamic behaviors of the monopile OWTs.To ensure accuracy and precision,it is imperative to construct a detailed model of the wind turbine system,while also taking into account simulation efficiency.
基金financially supported by the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety of Tianjin University(Grant No.HESS-2002)。
文摘As offshore wind farms expand into deeper and farther ocean regions and the unit capacity of offshore wind turbines(OWTs)increases,there is a pressing need for a new foundation structure that can accommodate deep-sea conditions and support large capacities while maintaining economical and safe.To meet this goal of integrated transportation and one-step installation,a novel five-bucket jacket foundation(FBJF),with its suction installation and leveling methods in sand,has been proposed,analyzed and experimentally studied.First,seepage failure experiments of the FBJF at various depths were conducted,and a formula for calculating the critical suction of seepage failure suitable for the FBJF in sand was chosen and recommended for use with a range of values for the permeability coefficient ratio.Second,through leveling experiments of the FBJF at different depths,the maximum adjustable leveling angle during the sinking process was defined using seepage failure and the adjustable leveling angle of the foundation as control criteria.Various leveling control strategies were proposed and verified.Finally,an automatic sinking and leveling control system for the FBJF was developed and experimentally verified for feasibility.
文摘The ocean serves as a vital carrier for human resource development and economic growth and contains rich mineral resources such as oil,natural gas,polymetallic nodules,cobalt-rich ferromanganese crusts,polymetallic sulfides,and rare earth ore.Moreover,the ocean has wealthy reserves of wind,wave,tidal,and solar energy,making it an essential strategic space for sustainable future development.However,offshore structures are complex.
基金the support of the National Natural Science Foundation of China(52077061)Fundamental Research Funds for the Central Universities(B240201121).
文摘Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.
基金funded by the Key Technology Research and Development Program(Nos.2022YFB4201301,and 2022YFB4201304)the National Natural Science Foundation of China(Nos.52101333,52071058,51939002,and 52071301)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ21E090009)supported by the Natural Science Foundation of Liaoning Province(No.2022-KF-18-01)the special funds for Promoting High-Quality Development from the Department of Natural Resources of Guangdong Province(No.GDNRC[2020]016).
文摘Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.
基金Supported by the Science and Technology Research Project of China Petroleum&Chemical Corporation (No. P22175)。
文摘The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.
基金supported in part by the National Natural Science Foundation of China(Nos.51978337,U2039209).
文摘The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees.
文摘The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in petroleum system modelling(PSM)in the oil industry for calibration purposes.Th representing the minimum temperature of fluid entrapment estimated from fluid-inclusion study provides extra support to build the thermal models for PSM.Fluid inclusion parameters along with Rock-Eval pyrolysis analysis have been used to predict the maturity of oil in terms of API gravity as well as the maturity of source rocks respectively.Two exploratory wells RV-1(Mumbai Offshore Basin)and KK4C-A-1(Kerala-Konkan Offshore Basin),India were examined and the T_(h)from most of the fluid inclusions of wells RV-1 and KK4C-A-1 fell in the oil window range of 60-140℃suggesting thermal conditions favourable for oil generation in both of the wells.T_(h)of coeval aqueous inclusions along with the Hydrocarbon Fluid inclusions(HCFIs)was used to calibrate PSM.Vital parameters show that source rocks of well RV-1 are mature and that of well KK4C-A-1 are immature.Two sets of PSM are created in terms of generation and expulsion for the dry wells RV-1 and KK4C-A-1 and calibrated each well using fluid inclusion Th and BHT.From the fluid inclusion analysis method,it is evident that hydrocarbon generation happened in both wells and the paleo-temperature indicates that the formations of both wells were subjected to temperatures in the oil window range,even though it was designated as dry wells in the present scenario.The present study highlights the application of fluid inclusion paleo-temperature(Th)during calibration instead of commonly used methods.We could obtain desirable and accurate data output from PSM using T_(h) calibration.
基金Geological Survey of India(Data collected as part of annual field programme of Geological Survey of India,Ministry of Mines,Government of India)。
文摘Limestone is one of the essential raw materials in the cement,paint,steel,ceramic,glass,chemical,pharmaceutical,paper,and fertilizer industries.In India,only 8%of the limestone resources are placed under the reserve category,of which 97%is of cement grade.Thus,India depends on imports to bridge the demand‐supply gap of steel,blast furnace,and chemical‐grade limestone.Efforts of Geological Survey of India(GSI)to locate alternate sources for limestone led to the discovery of enormous quantities of carbonate minerals called limemud from the continental shelf margin of the west coast of India.GSI carried out systematic studies to explore the nature of the disposition,quality,quantity,and suitability of the offshore limemud for various industrial applications.A preliminary estimate of resources using high‐resolution subbottom profiling and sediment core sample studies established the occurrence of more than 172 billion tonnes of high‐grade(The content of CaCO3 is greater than 80 wt%)limemud in 0.4–28.0m thick stratified sediment layers spread over an area of 18000 km2.Chemical,physical,mineralogical,beneficiation,and agglomeration studies found the offshore limemud as a potential replacement for limestone in the cement,filler,blast furnace,steel melting shop,lime production,paint,and Grade‐I steel industries.An assessment of mining and transportation costs indicates that the offshore limemud(USD 5–6/ton)is more cost‐effective than that imported from other countries(USD16‐18/ton).With several advantageous factors like low impurity,mode of occurrence in overburden‐free stratified form,fine‐grained slurry nature,and shallow water depth,sustainable mining of offshore limemud could be a future reality with controllable technological,economic,and environmental challenges.
文摘Follow-up of environmental impacts is an integral part of the Environmental Impact Assessment (EIA) process, closely related to the effectiveness of the instrument. EIA follow-up has been receiving a lot of interest from scientists and practitioners, though it is recognized as one of the weakest points of EIA systems globally. Also, EIA follow-up is influenced by the context, mainly in terms of the types of projects or activities and their related impacts on the environment. Therefore, the present paper is focused on the investigation of the follow-up stage applied to the activity of seismic survey coupled with offshore oil & gas exploitation in Brazil. Research was based on a qualitative approach that included document analysis and semi-structured interviews with analysts involved in EIA processes, and sought to generate evidence of effectiveness of the EIA follow-up as conducted by the Federal Environment Agency (Ibama) in order to situate the practice of follow-up in the broader context of international best practice principles. Based on the findings, it was concluded that, due to the peculiarities of offshore seismic survey, it is necessary to promote adaptations in the procedures for monitoring impacts in order to ensure proper alignment with the principles and conceptual foundations that guide EIA practice. Specifically, the timing of the execution of the activity imposes challenges for its integration into the “conventional” cycle that has guided the monitoring of the impacts in the EIA of projects.
基金Youth Fund Project for Humanities and Social Sciences Research of the Ministry of Education,"Research on Designing Incentive Mechanisms and Policies for Large-Scale and Environmentally Friendly Offshore Oil and Gas Exploitation"(Project Number:19YJCZH106).
文摘The oceans'vast expanse has given rise to copious oil and gas resources,with recent years witnessing a steady unlocking of offshore oil and gas potential,positioning them as a key successor in global energy reserves.Currently,offshore oil and gas extraction constitutes nearly a third of the world's oil and gas output.This segment has evolved into a mutually beneficial ecosystem where operators and service providers collaborate closely around exploration and development activities.Investment in offshore oil and gas typically follows a dual "one-third’"pattern,reflecting high upfront costs but promising returns.It also underscores the stark variations in project viability and regional economic efficiency,with monopolistic traits seen at both national and corporate levels.Collaboration has emerged as a key tactic for resource-rich countries and oil companies to advance their offshore ventures.Given the distinct nature of offshore oil and gas development,Chinese oil companies are advised to seize opportunities in marine exploration,emphasize the coordination and planning abilities of the global supply chain,focus on the reserves of offshore oil and gas development technologies,as well as the capabilities of commercial talents and other forms of support,courageously pursue significant offshore assets,and effectively utilize global technology,equipment,and expertise,and rapidly build a competitive edge in offshore oil and gas projects.
基金financial support from the National Key Sci-Tech Major Special Item(No.2011ZX05026-001)Program for Changjiang Scholars and Innovative Research Team in University(IRT1086)
文摘This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.