期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Dynamic Analysis of a 10 MW Floating Offshore Wind Turbine Considering the Tower and Platform Flexibility
1
作者 GAO Shan ZHANG Lixian +3 位作者 SHI Wei WANG Wenhua WANG Bin LI Xin 《Journal of Ocean University of China》 CAS CSCD 2024年第2期358-370,共13页
Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ... Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined. 展开更多
关键词 floating offshore wind turbine TripleSpar semisubmersible platform rigidity and flexibility platform coupled simulation
下载PDF
Hydrodynamic Characteristics of Three-Bucket Jacket Foundation for Offshore Wind Turbines During the Lowering Process 被引量:1
2
作者 ZHANG Pu-yang QI Xin +3 位作者 WEI Yu-mo ZHANG Sheng-wei LE Cong-huan DING Hong-yan 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期73-84,共12页
The three-bucket jacket foundation is a new type of foundation for offshore wind turbine that has the advantages of fast construction speed and suitability for deep water. The study of the hoisting and launching proce... The three-bucket jacket foundation is a new type of foundation for offshore wind turbine that has the advantages of fast construction speed and suitability for deep water. The study of the hoisting and launching process is of great significance to ensure construction safety in actual projects. In this paper, a new launching technology is proposed that is based on the foundation of the three-bucket jacket for offshore wind turbine. A complete time domain simulation of the launching process of three-bucket jacket foundation is carried out by a theoretical analysis combined with hydrodynamic software Moses. At the same time, the effects of different initial air storage and sea conditions on the motion response of the structure and the hoisting cable tension are studied. The results show that the motion response of the structure is the highest when it is lowered to 1.5 times the bucket height. The natural period of each degree of freedom of the structure increases with the increase of the lowering depth. The structural motion response and the hoisting cable tension vary greatly in the early phases of Stages Ⅰ and Ⅲ, smaller in Stage Ⅱ, and gradually stabilize in the middle and late phases of Stage Ⅲ. 展开更多
关键词 three-bucket jacket foundation time domain simulation hoisting construction motion response offshore wind turbine
下载PDF
Aero-Hydrodynamic Coupled Dynamic Characteristics of Semi-Submersible Floating Offshore Wind Turbines Under Inflow Turbulence 被引量:1
3
作者 JIANG Hai-rui BAI Xing-lan Murilo A.VAZ 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期660-672,共13页
In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated... In this study,the frequency characteristics of the turbulent wind and the effects of wind-wave coupling on the low-and high-frequency responses of semi-submersible floating offshore wind turbines(FOWT)are investigated.Various wave load components,such as first-order wave loads,combined first-and second-order difference-frequency wave loads,combined first-and second-order sum-frequency wave loads,and first-and complete second-order wave loads are taken into consideration,while different turbulent environments are considered in aerodynamic loads.The com-parison is based on time histories and frequency spectra of platform motions and structural load responses and statistical values.The findings indicate that the second-order difference-frequency wave loads will significantly increase the natural frequency of low-frequency motion in the responses of the platform motion and structure load of the semi-submersible platform,which will cause structural fatigue damage.Under the action of turbulent wind,the influences of second-order wave loads on the platform motion and structural load response cannot be ignored,especially under extreme sea conditions.Therefore,in order to evaluate the dynamic responses of semi-submersible FOWT more accurately,the actual environment should be simulated more realistically. 展开更多
关键词 turbulence characteristics floating offshore wind turbines second-order hydrodynamic loads low-and high-frequency responses aero-hydrodynamic coupling
下载PDF
Evaluating effectiveness of multiple tuned mass dampers for vibration control of jacket offshore wind turbines under onshore and seafloor earthquakes
4
作者 Pan Zuxing Liu Yingzhou +4 位作者 Wang Wenhua Li Xin Zhao Shengxiao Jiang Zhenqiang Shang Jin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期1045-1063,共19页
The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.I... The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.In addition to the remarkable influence of the rotor system on the responses of the operation OWT under earthquakes,interactions among the natural modes of the grid loss OWT in the fore-aft and side-to-side directions are revealed.By comparing with the onshore earthquakes,the more significant differences of structural response are observed under the selected seafloor earthquakes,due to the longer duration and more abundant energy distribution around the natural frequencies of OWT.Concurrently,a multiple tuned mass damper(MTMD)is designed and applied to the operation and grid loss OWTs.Then,the comparisons of the mitigation effects under onshore and seafloor ground motions are carried out,and the necessity of applying seafloor ground motions to OWTs are proved.Moreover,in comparison to the operation OWT,more effective reductions are observed for the grid loss OWT under onshore and seafloor earthquakes using the designed MTMD.Therefore,the combined shutdown procedures and MTMD vibration control strategy is suggested for OWTs under earthquakes. 展开更多
关键词 offshore wind turbine EARTHQUAKE vibration control coupled analysis MTMD
下载PDF
A Simplified Method for Estimating the Initial Stiffness of Monopile-Soil Interaction Under Lateral Loads in Offshore Wind Turbine Systems
5
作者 LI Xiao-juan DAI Guo-liang +2 位作者 ZHU Ming-xing WANG Li-yan LIU Hong-yuan 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期165-174,共10页
The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stif... The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stiffness,has a significant impact on the study of natural frequency and dynamic response of the monopile.In this paper,a simplified method for estimating the interface mechanical behavior of monopiles under initial lateral loads is proposed.Depending on the principle of minimum potential energy and virtual work theory,the functions of soil reaction components at the interface of monopiles are derived;MATLAB programming has been used to simplify the functions of the initial stiffness by fitting a large number of examples;then the functions are validated against the field test data and FDM results.This method can modify the modulus of the subgrade reaction in the p-y curve method for the monopile-supported offshore wind turbine system. 展开更多
关键词 theoretical analysis pile−soil interaction interface mechanical behavior offshore wind turbine systems
下载PDF
Simulation of Offshore Wind Turbine Blade Docking Based on the Stewart Platform
6
作者 Yi Zhang Jiamin Guo Huanghua Peng 《Energy Engineering》 EI 2023年第11期2489-2502,共14页
The windy environment is the main cause affecting the efficiency of offshore wind turbine installation.In order to improve the stability and efficiency of single-blade installation of offshore wind turbines under high... The windy environment is the main cause affecting the efficiency of offshore wind turbine installation.In order to improve the stability and efficiency of single-blade installation of offshore wind turbines under high wind speed conditions,the Stewart platform is used as an auxiliary tool to help dock the wind turbine blade in this paper.In order to verify the effectiveness of the Stewart platform for blade docking,a blade docking simulation system consisting of the Stewart platform,wind turbine blade,and wind load calculation module was built based on Simulink/SimscapeMultibody.At the same time,the PID algorithm is used to control the Stewart platform so that the blade can effectively track the desired trajectory during the docking process to ensure the successful docking of the blade.Through the simulation of the docking process for blades with a length of 61.5 meters,this paper successfully demonstrates a docking system that might facilitate future docking processes.It also shows that the Stewart platform can effectively reduce the vibration and the movement range of the blade root and improve the stability and efficiency of blade docking. 展开更多
关键词 offshore wind turbine Stewart platform blade docking PID simscape multibody
下载PDF
Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD 被引量:15
7
作者 Chen Jianbing Liu Youkun Bai Xueyuan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期55-75,共21页
A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting ... A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting response- equivalent accelerations on the shaking table. The test results show that the control effect of the TLCD system is significant in reducing the responses under both wind-wave equivalent loads and ground motions, but obviously varies for different inputs, Further, a blade-hub-tower integrated numerical model for the wind turbine system is established. The model is capable of considering the rotational effect of blades by combining Kane's equation with the finite element method. The responses of the wind tower equipped with TLCD devices are numerically obtained and compared to the test results, showing that under both controlled and uncontrolled conditions with and without blades' rotation, the corresponding responses exhibit good agreement. This demonstrates that the proposed numerical model performs well in capturing the wind-wave coupled response of the offshore wind turbine systems under control. Both numerical and experimental results show that the TLCD system can significantly reduce the structural response and thus improve the safety and serviceability of the offshore wind turbine tower systems. Additional issues that require further study are discussed. 展开更多
关键词 offshore wind turbine shaking table test TLCD numerical model vibration control
下载PDF
Contribution of tuned liquid column gas dampers to the performance of offshore wind turbines under wind, wave, and seismic excitations 被引量:8
8
作者 Khosrow Bargi Reza Dezvareh Seyed Amin Mousavi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第3期551-561,共11页
The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column... The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation. 展开更多
关键词 offshore wind turbine wind load wave load seismic load tuned liquid column gas damper
下载PDF
Dynamic Analysis of Tension Leg Platform for Offshore Wind Turbine Support as Fluid-Structure Interaction 被引量:6
9
作者 黄虎 张社荣 《China Ocean Engineering》 SCIE EI 2011年第1期123-131,共9页
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics ... Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is used in analyzing the coupled model, and the dynamic characteristics of the TLP for offshore wind turbine support are recognized. As shown by the calculated results: for the lower modes, the shapes are water's vibration, and the vibration of water induces the structure's swing; the mode shapes of the structure are complex, and can largely change among different members; the mode shapes of the platform are related to the tower's. The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform; the TLP has good adaptability for the water depths and the environment loads. The change of the size and parameters of TLP can improve the dynamic characteristics, which can reduce the vibration of the TLP caused by the loads. Through the vibration analysis, the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads, and thus the resonance vibration can be avoided, therefore the offshore wind turbine can work normally in the complex conditions. 展开更多
关键词 offshore wind turbine tension leg platform fluid structure interaction dynamic characteristics yaw resonance vibration
下载PDF
Concept Design and Coupled Dynamic Response Analysis on 6-MW Spar-Type Floating Offshore Wind Turbine 被引量:5
10
作者 MENG Long ZHOU Tao +2 位作者 HE Yan-ping ZHAO Yong-sheng LIU Ya-dong 《China Ocean Engineering》 SCIE EI CSCD 2017年第5期567-577,共11页
Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed... Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system. 展开更多
关键词 Spar-type floating offshore wind turbine concept design combined wind and wave loads coupled dynamicresponse
下载PDF
Multiple Tuned Mass Damper Based Vibration Mitigation of Offshore Wind Turbine Considering Soil–Structure Interaction 被引量:5
11
作者 Mosaruf HUSSAN Faria SHARMIN Dookie KIM 《China Ocean Engineering》 SCIE EI CSCD 2017年第4期476-486,共11页
The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle t... The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance. 展开更多
关键词 soil-structure interaction multiple tuned mass damper vibration control response surface method jacket supported offshore wind turbine
下载PDF
Experimental Investigation of Local Scour Around A New Pile-Group Foundation for Offshore Wind Turbines in Bi-Directional Current 被引量:4
12
作者 JI Chao ZHANG Jin-feng +2 位作者 ZHANG Qing-he LI Ming-xing CHEN Tong-qing 《China Ocean Engineering》 SCIE EI CSCD 2018年第6期737-745,共9页
The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity ... The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV.Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation. 展开更多
关键词 offshore wind turbines new pile-group foundation local scour bi-directional current
下载PDF
Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element model considering soil-monopile interaction 被引量:3
13
作者 Djillali Amar Bouzid Subhamoy Bhattacharya Lalahoum Otsmane 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期333-346,共14页
A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using... A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KRand cross-coupling stiffness KLRof which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements(displacements and rotations), the values of KL, KRand KLRwere obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness. 展开更多
关键词 Nonlinear finite element analysis Vertical slices model Monopiles under horizontal loading Natural frequency Monopile head stiffness offshore wind turbines(OWTs)
下载PDF
Dynamic Analysis of A 5-MW Tripod Offshore Wind Turbine by Considering Fluid–Structure Interaction 被引量:3
14
作者 ZHANG Li-wei LI Xin 《China Ocean Engineering》 SCIE EI CSCD 2017年第5期559-566,共8页
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine cons... Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by E1-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater. 展开更多
关键词 5-MW tripod offshore wind turbine fluid-structure interaction natural frequency seismic analysis hydrodynamic pressure
下载PDF
Prediction of Short-Term Distributions of Load Extremes of Offshore Wind Turbines 被引量:2
15
作者 王迎光 《China Ocean Engineering》 SCIE EI CSCD 2016年第6期851-866,共16页
This paper proposes a new methodology to select an optimal threshold level to be used in the peak over threshold (POT) method for the prediction of short-term distributions of load extremes of offshore wind turbines... This paper proposes a new methodology to select an optimal threshold level to be used in the peak over threshold (POT) method for the prediction of short-term distributions of load extremes of offshore wind turbines. Such an optimal threshold level is found based on the estimation of the variance-to-mean ratio for the occurrence of peak values, which characterizes the Poisson assumption. A generalized Pareto distribution is then fitted to the extracted peaks over the optimal threshold level and the distribution parameters are estimated by the method of the maximum spacing estimation. This methodology is applied to estimate the short-term distributions of load extremes of the blade bending moment and the tower base bending moment at the mudline of a monopile-supported 5MW offshore wind turbine as an example. The accuracy of the POT method using the optimal threshold level is shown to be better, in terms of the distribution fitting, than that of the POT methods using empirical threshold levels. The comparisons among the short-term extreme response values predicted by using the POT method with the optimal threshold levels and with the empirical threshold levels and by using direct simulation results further substantiate the validity of the proposed new methodology. 展开更多
关键词 extreme responses monopile-supported offshore wind turbine peak over threshold method optimalthreshold level variance-to-mean ratio generalized Pareto distribution maximum spacing estimation
下载PDF
A simplified method for analyzing the fundamental frequency of monopile supported offshore wind turbine system design 被引量:2
16
作者 Yang Chunbao Wang Rui Zhang Jianmin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期893-901,共9页
Preliminary design of offshore wind turbines requires high precision simplified methods for the analysis of the system fundamental frequency. Based on the Rayleigh method and Lagrange’s Equation, this study establish... Preliminary design of offshore wind turbines requires high precision simplified methods for the analysis of the system fundamental frequency. Based on the Rayleigh method and Lagrange’s Equation, this study establishes a simple formula for the analysis of system fundamental frequency in the preliminary design of an offshore wind turbine with a monopile foundation. This method takes into consideration the variation of cross-section geometry of the wind turbine tower along its length, with the inertia moment and distributed mass both changing with diameter. Also the rotational flexibility of the monopile foundation is mainly considered. The rigid pile and elastic middle long pile are calculated separately. The method is validated against both FEM analysis cases and field measurements, showing good agreement. The method is then used in a parametric study, showing that the tower length Lt, tower base diameter d0, tower wall thickness δt, pile diameter db and pile length Lb are the major factors influencing the fundamental frequency of the offshore wind turbine system. In the design of offshore wind turbine systems, these five parameters should be adjusted comprehensively. The seabed soil condition also needs to be carefully considered for soft clay and loose sand. 展开更多
关键词 offshore wind turbine system fundamental frequency analytical method rotational foundation flexibility
下载PDF
Platform motion minimization using model predictive control of a floating offshore wind turbine 被引量:2
17
作者 Kamran Ali Shah Ye Li +2 位作者 Ryozo Nagamune Yarong Zhou Waheed Ur Rehman 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第5期291-295,共5页
Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the pe... Wind turbines are installed offshore with the assistance of a floating platform to help meet the world’s increasing energy needs.However,the incident wind and extra incident wave disturbances have an impact on the performance and operation of the floating offshore wind turbine(FOWT)in comparison to bottom-fixed wind turbines.In this paper,model predictive control(MPC)is utilized to overcome the limitation caused by platform motion.Due to the ease of control synthesis,the MPC is developed using a simplified model instead of high fidelity simulation model.The performance of the controller is verified in the presence of realistic wind and wave disturbances.The study demonstrates the effectiveness of MPC in reducing platform motions and rotor/generator speed regulation of FOWTs. 展开更多
关键词 wind energy Floating offshore wind turbine Platform motion Model predictive control
下载PDF
Numerical Simulation of Icing on Nrel 5-MW Reference Offshore Wind Turbine Blades Under Different Icing Conditions 被引量:1
18
作者 CAO Hui-qing BAI Xu +2 位作者 MA Xian-dong YIN Qun YANG Xiang-yu 《China Ocean Engineering》 SCIE EI CSCD 2022年第5期767-780,共14页
Offshore wind energy resources are operational in cold regions,while offshore wind turbines will face the threat of icing.Therefore,it is necessary to study icing of offshore wind turbines under different icing condit... Offshore wind energy resources are operational in cold regions,while offshore wind turbines will face the threat of icing.Therefore,it is necessary to study icing of offshore wind turbines under different icing conditions.In this study,icing sensitivity of offshore wind turbine blades are performed using a combination of FLUENT and FENSAP-ICE software,and the effects of liquid water content(LWC),medium volume diameter(MVD),wind speed and air temperature on blade icing shape are analyzed by two types of ice,namely rime ice and glaze ice.The results show that the increase of LWC and MVD will increase the amount of ice that forms on the blade surface for either glaze ice or rime ice,and an increase of MVD will expand the adhesion surface between ice and blade.Before reaching the rated wind speed of 11.4 m/s,it does not directly affect the icing shape.However,after reaching the rated wind speed,the attack angle of the incoming flow decreases obviously,and the amount of ice increases markedly.When the ambient air temperature meets the icing conditions of glaze ice(i.e.,−5℃ to 0℃),the lower the temperature,the more glaze ice freezes,whereas air temperature has no impact on the icing of rime ice.Compared with onshore wind turbines,offshore wind turbines might face extreme meteorological conditions,and the wind speed has no impact on the amount of ice that forms on the blade surface for most wind speeds. 展开更多
关键词 environmental parameters cold regions offshore wind turbine RIME GLAZE numerical simulation
下载PDF
Analysis of Key Disciplinary Parameters in Floating Offshore Wind Turbines with An AI-Based SADA Method 被引量:1
19
作者 CHEN Peng HU Zhi-qiang 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期649-657,共9页
Floating offshore wind turbines(FOWTs)are a promising offshore renewable energy harvesting facility but requesting multiple-disciplinary analysis for their dynamic performance predictions.However,engineering-fidelity ... Floating offshore wind turbines(FOWTs)are a promising offshore renewable energy harvesting facility but requesting multiple-disciplinary analysis for their dynamic performance predictions.However,engineering-fidelity level tools and the empirical parameters pose challenges due to the strong nonlinear coupling effects of FOWTs.A novel method,named SADA,was proposed by Chen and Hu(2021)for optimizing the design and dynamic performance prediction of FOWTs in combination with AI technology.In the SADA method,the concept of Key Disciplinary Parameters(KDPs)is also proposed,and it is of crucial importance in the SADA method.The purpose of this paper is to make an in-depth investigation of the characters of KDPs and the internal correlations between different KDPs in the dynamic performance prediction of FOWTs.Firstly,a brief description of SADA is given,and the basin experimental data are used to conduct the training process of SADA.Secondly,categories and boundary conditions of KDPs are introduced.Three types of KDPs are given,and different boundary conditions are used to analyze KDPs.The results show that the wind and current in Environmental KDPs are strongly correlated with the percentage difference of dynamic response rather than that by wave parameters.In general,the optimization results of SADA consider the specific basin environment and the coupling results between different KDPs help the designers further understand the factors that have a more significant impact on the FOWTs system in a specific domain. 展开更多
关键词 floating offshore wind turbine SADA KDPs machine learning basin experiment
下载PDF
Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses 被引量:1
20
作者 MENG Long HE Yan-ping +6 位作者 ZHAO Yong-sheng YANG Jie YANGHe HAN Zhao-long YU Long MAO Wen-gang DU Wei-kang 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期608-620,共13页
The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In... The floating offshore wind turbine(FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In this study,the dynamic responses of a 6 MW Spar type FOWT designed for the water depth of 100 m are investigated by means of the wave tank experiment and numerical analysis. A scaled model is manufactured for the experiment at a ratio of65.3, while the numerical model is constructed on the open-source platform FAST(Fatigue, Aerodynamics,Structures, and Turbulence). Still water tests, wind-induced only tests, wave-induced only tests and combined windwave-current tests are all conducted experimentally and numerically. The accuracy of the experimental set-up as well as the loading generation has been verified. Surge, pitch and heave motions are selected to analyze and the numerical results agree well with the experimental values. Even though results obtained by using the FOWT calculation model established in FAST software show some deviations from the test results, the trends are always consistent. Both experimental and numerical studies demonstrate that they are reliable for the designed 6 MW Spar type FOWT. 展开更多
关键词 floating offshore wind turbine dynamic responses Spar type platform FAST model test
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部