期刊文献+
共找到299,635篇文章
< 1 2 250 >
每页显示 20 50 100
Geologic characteristics,exploration and production progress of shale oil and gas in the United States:An overview
1
作者 MCMAHON T P LARSON T E +1 位作者 ZHANG T SHUSTER M 《Petroleum Exploration and Development》 SCIE 2024年第4期925-948,共24页
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o... We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production. 展开更多
关键词 United States shale oil shale gas shale reservoirs unconventional reservoirs oil and gas production resource assessment
下载PDF
Optimization of Gas Production from Hydrate-Bearing Sediments with Fluctuation Characteristics
2
作者 LI Yaobin XU Tianfu +3 位作者 XIN Xin YU Han YUAN Yilong ZHU Huixing 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期618-632,共15页
As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is impor... As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%. 展开更多
关键词 natural gas hydrate numerical simulation fluctuation characteristics depressurization production production well optimization
下载PDF
Gas-Water Production of a Continental Tight-Sandstone Gas Reservoir under Different Fracturing Conditions
3
作者 Yan Liu Tianli Sun +1 位作者 Bencheng Wang Yan Feng 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1165-1180,共16页
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte... A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small. 展开更多
关键词 Tight sandstone gas reservoir fracture propagation flowback rate gas production law water production law influencing factor
下载PDF
A new production component method for natural gas development planning
4
作者 Fanliao Wang Jiangchen Han +4 位作者 Shucheng Liu Yanqing Liu Kun Su Jing Du Liru Wang 《Energy Geoscience》 EI 2024年第1期283-292,共10页
Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ... Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery. 展开更多
关键词 production component method production prediction Life cycle model gas development planning Western Sichuan Basin
下载PDF
Shale oil production predication based on an empirical modelconstrained CNN-LSTM
5
作者 Qiang Zhou Zhengdong Lei +4 位作者 Zhewei Chen Yuhan Wang Yishan Liu Zhenhua Xu Yuqi Liu 《Energy Geoscience》 EI 2024年第2期232-239,共8页
Accurately predicting the production rate and estimated ultimate recovery(EUR)of shale oil wells is vital for efficient shale oil development.Although numerical simulations provide accurate predictions,their high time... Accurately predicting the production rate and estimated ultimate recovery(EUR)of shale oil wells is vital for efficient shale oil development.Although numerical simulations provide accurate predictions,their high time,data,and labor demands call for a swifter,yet precise,method.This study introduces the DuongeCNNeLSTM(D-C-L)model,which integrates a convolutional neural network(CNN)with a long short-term memory(LSTM)network and is grounded on the empirical Duong model for physical constraints.Compared to traditional approaches,the D-C-L model demonstrates superior precision,efficiency,and cost-effectiveness in predicting shale oil production. 展开更多
关键词 Shale oil production prediction D-C-L Physical constraint
下载PDF
Recent advances in switchable surfactants for heavy oil production:A review
6
作者 Qi Li Lingfei Liu +1 位作者 Dejun Sun Zhenghe Xu 《Energy Geoscience》 EI 2024年第4期75-88,共14页
Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition... Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery. 展开更多
关键词 Heavy oil Switchable surfactant Cold production EMULSIFICATION DEMULSIFICATION
下载PDF
Numerical Investigation of Combined Production of Natural Gas Hydrate and Conventional Gas
7
作者 Hongzhi Xu Jian Wang +3 位作者 Shuxia Li Fengrui Zhao Chengwen Wang Yang Guo 《Fluid Dynamics & Materials Processing》 EI 2024年第3期505-523,共19页
Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effecti... Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio. 展开更多
关键词 Natural gas hydrate conventional gas coexistence accumulation DEPRESSURIZATION combined production
下载PDF
Production and trade trend of oils and oilseeds in BRICS countries
8
作者 ZHANG Hong 《中国油脂》 CAS CSCD 北大核心 2024年第8期1-10,共10页
In order to promote agricultural production and trade cooperation among BRICS countries,and ensure the security and stability of the oils and oilseeds industrial and supply chains in China and the world,the production... In order to promote agricultural production and trade cooperation among BRICS countries,and ensure the security and stability of the oils and oilseeds industrial and supply chains in China and the world,the production,consumption,trade trend,and cooperation potential of oils and oilseeds in BRICS countries were expounded,and relevant policy recommendations were put forward.Most of the BRICS countries are major agricultural producers,and they are also important agricultural product consumption markets in the world.In 2023/2024,the production and consumption of oilseeds in BRICS countries account for nearly half of the world's total;the production of vegetable oils exceeds a quarter of the world's total,and the consumption of vegetable oils accounts for 40%of the world's total.In 2023/2024,the import and export volume of oilseeds exceeds half of the world's total;vegetable oil imports account for 40%of the world's total,and exports account for about one tenth of the world's total.China's imports of oilseeds and oils from BRICS countries account for 68%and 29%of its global imports in 2023,respectively.BRICS countries are rich in agricultural land resources,have great potential for oils and oilseeds production,obvious complementary advantages in trade structure,and huge space for future cooperation.It is suggested that Brazil should be included in the"Belt and Road"co-construction category to promote the continuous deepening of agricultural cooperation between China and Brazil.It is suggested to explore regional agricultural trade agreements among BRICS countries,promote currency settlement and exchange among BRICS countries,and enhance the facilitation and stability of BRICS trade.It is suggested that China should increase its investment in BRICS countries and export advanced technology and management experience to benefit local agricultural development and achieve a mutually beneficial and win-win situation. 展开更多
关键词 BRICS countries oils and oilseeds production and consumption trade trend agricultural potential
下载PDF
Co-incorporating green manure and crop straw increases crop productivity and improves soil quality with low greenhouse-gas emissions in a crop rotation
9
作者 Na Zhao Xiquan Wang +6 位作者 Jun Ma Xiaohong Li Jufeng Cao Jie Zhou Linmei Wu Peiyi Zhao Weidong Cao 《The Crop Journal》 SCIE CSCD 2024年第4期1233-1241,共9页
In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and ... In a nine-year field experiment in a wheat-maize-sunflower cropping system in Hetao Irrigation Area,Inner Mongolia,China,organic amendments applied as straw,manure,green manure,and the combination of green manure and straw increased wheat and maize yield,soil aggregate stability,and soil microbial activity in comparison with chemical fertilizer,without changing greenhouse gas emission intensity. 展开更多
关键词 Green manure STRAW MANURE Soil organic carbon Soil quality Crop production Diversified cropping
下载PDF
Study of inter-well interference in shale gas reservoirs by a robust production data analysis method based on deconvolution
10
作者 Wen-Chao Liu Cheng-Cheng Qiao +5 位作者 Ping Wang Wen-Song Huang Xiang-Wen Kong Yu-Ping Sun He-Dong Sun Yue-Peng Jia 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2502-2519,共18页
In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolut... In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells. 展开更多
关键词 Shale gas Inter-well interference DECONVOLUTION production data analysis Typical curves Multi-stage fractured horizontal well
下载PDF
Implication of Water-Rock Interaction for Enhancing Shale Gas Production
11
作者 Qiuyang Cheng Lijun You +3 位作者 Cheng Chang Weiyang Xie Haoran Hu Xingchen Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1441-1462,共22页
Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters t... Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters the formation,resulting in widespread water-rock interaction.Deeply understanding such effects is required to optimize the production system.In this study,the mechanisms of water-rock interaction and the associated responses of shale fabric are systematically reviewed for working fluids such as neutral fluids,acid fluids,alkali fluids and oxidative fluids.It is shown that shale is generally rich in water-sensitive components such as clay minerals,acidsensitive components(like carbonate minerals),alkali-sensitive components(like quartz),oxidative-sensitive components(like organic matter and pyrite),which easily lead to change of rock fabric and mechanical properties owing to water-rock interaction.According to the results,oxidizing acid fluids and oxidizing fracturing fluids should be used to enhance shale gas recovery.This study also indicates that an aspect playing an important role in increasing cumulative gas production is the optimization of the maximum shut-in time based on the change point of the wellhead pressure drop rate.Another important influential factor to be considered is the control of the wellhead pressure considering the stress sensitivity and creep characteristics of the fracture network. 展开更多
关键词 Shale gas reservoir hydraulic fracturing working fluid water-rock interaction OXIDATION shut-in production system
下载PDF
Production Capacity Prediction Method of Shale Oil Based on Machine Learning Combination Model
12
作者 Qin Qian Mingjing Lu +3 位作者 Anhai Zhong Feng Yang Wenjun He Min Li 《Energy Engineering》 EI 2024年第8期2167-2190,共24页
The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinea... The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinear in nature,pose challenges for accurate description through physical models.While field data provides insights into real-world effects,its limited volume and quality restrict its utility.Complementing this,numerical simulation models offer effective support.To harness the strengths of both data-driven and model-driven approaches,this study established a shale oil production capacity prediction model based on a machine learning combination model.Leveraging fracturing development data from 236 wells in the field,a data-driven method employing the random forest algorithm is implemented to identify the main controlling factors for different types of shale oil reservoirs.Through the combination model integrating support vector machine(SVM)algorithm and back propagation neural network(BPNN),a model-driven shale oil production capacity prediction model is developed,capable of swiftly responding to shale oil development performance under varying geological,fluid,and well conditions.The results of numerical experiments show that the proposed method demonstrates a notable enhancement in R2 by 22.5%and 5.8%compared to singular machine learning models like SVM and BPNN,showcasing its superior precision in predicting shale oil production capacity across diverse datasets. 展开更多
关键词 Shale oil production capacity data-driven model model-driven method machine learning
下载PDF
A transient production prediction method for tight condensate gas wells with multiphase flow
13
作者 BAI Wenpeng CHENG Shiqing +3 位作者 WANG Yang CAI Dingning GUO Xinyang GUO Qiao 《Petroleum Exploration and Development》 SCIE 2024年第1期172-179,共8页
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press... Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves. 展开更多
关键词 tight reservoir condensate gas multiphase flow phase behavior transient flow PSEUDO-PRESSURE production prediction
下载PDF
Enhanced gas production and CO_(2) storage in hydrate-bearing sediments via pre-depressurization and rapid CO_(2) injection
14
作者 Hongnan Chen Yifei Sun +5 位作者 Bojian Cao Minglong Wang Ming Wang Jinrong Zhong Changyu Sun Guangjin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期126-134,共9页
Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In t... Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate. 展开更多
关键词 HYDRATE DEPRESSURIZATION CO_(2) storage CH_(4) production Reservoir remediation
下载PDF
A Biogas Production Model from the Combination of Pig Manure and Cow Dung in N’Zérékoré City, Republic of Guine
15
作者 Madeleine Kamano Oumar Keita +1 位作者 Ansoumane Sakouvogui Aboubacar Sangare 《Energy and Power Engineering》 2024年第9期293-312,共20页
This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It... This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It was carried out in December 2020 in the Physics laboratory of the University of N’Zérékoré. The anaerobic digestion process took 25 days in an almost constant ambient temperature of 25˚C. Five digesters were loaded on 12/06/2020, two of which with 1 kg of pig dung and 1 kg of cow dung both in mono-digestion. The 3 other digesters in co-digestion with different proportions of pig manure and cow dung. The substrate in each digester is diluted in 2 liters of water, with a proportion of (1/2). The main results obtained are: 1) the evolution of the temperature and pH during digestion process, 2) the average biogas productions 0.61 liters for (D1);1.20 liter for (D2);1.65 liter for (D3);1.51 liter for (D4) and 1.31 liter for (D5). The cumulative amounts of biogas are respectively: D1 (7.95 liters), D2 (15.60 liters), D3 (21.50 liters), D4 (19.65 liters) and D5 (17.05 liters). The total cumulative production is 81.75 liters at the end of the process. The originality of this research work is that the proposed model examines the relation between the daily biogas production and the variation of temperature, pH and pressure. The combustibility test showed the biogas produced during the first week was no combustible (contains less than 50% methane). Combustion started from the biogas produced from the 15th day and it is from the 20th day that a significant amount of stable yellow/blue flame was observed. The results of this study show the combination of pig manure and cow dung presents advantages for optimal biogas production. 展开更多
关键词 production Experimental MODEL Pig Manure Cow Dung BIOgas N’Zérékoré Republic of Guinea
下载PDF
Evaluation of the Shallow Gas Hydrate Production Based on the Radial Drilling-Heat Injection-Back Fill Method
16
作者 CHEN Qiang WAN Yizhao +6 位作者 WU Nengyou SUN Jianye WANG Jian LIU Changling LI Yanlong LI Chengfeng HU Gaowei 《Journal of Ocean University of China》 CAS CSCD 2024年第1期119-128,共10页
It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because o... It has been evidenced that shallow gas hydrate resources are abundant in deep oceans worldwide.Their geological back-ground,occurrence,and other characteristics differ significantly from deep-seated hydrates.Because of the high risk of well construction and low production efficiency,they are difficult to be recovered by using conventional oil production methods.As a result,this paper proposes an alternative design based on a combination of radial drilling,heat injection,and backfilling methods.Multi-branch holes are used to penetrate shallow gas hydrate reservoirs to expand the depressurization area,and heat injection is utilized as a supplement to improve gas production.Geotechnical information collected from an investigation site close to the offshore production well in the South China Sea is used to assess the essential components of this plan,including well construction stability and gas production behavior.It demonstrates that the hydraulic fracturing of the 60mbsf overburden layer can be prevented by regulating the drilling fluid densities.However,the traditional well structure is unstable,and the suction anchor is advised for better mechanical performance.The gas produc-tion rate can be significantly increased by combining hot water injection and depressurization methods.Additionally,the suitable produc-tion equipment already in use is discussed. 展开更多
关键词 shallow gas hydrate trail production radial drilling-heat injection-back fill method experimental and numerical simulation
下载PDF
Production forecasting methods for different types of gas reservoirs
17
作者 Fanliao Wang Shucheng Liu +5 位作者 Ying Jia Anrong Gao Kun Su Yanqing Liu Jing Du Liru Wang 《Energy Geoscience》 EI 2024年第3期275-283,共9页
Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using l... Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using lifecycle models.SINOPEC's conventional gas reservoirs are dominated by carbonates,low-permeability tight sandstone,condensate,volcanic rocks,and medium-to-high-permeability sandstone.This study identifies the optimal production forecasting models by comparing the fitting coefficients of different models and calculating the relative errors in technically recoverable reserves.To improve forecast precision,it suggests substituting exponential smoothing method-derived predictions for anomalous data caused by subjective influences like market dynamics and maintenance activities.The preferred models for carbonate gas reservoir production forecasts are the generalized Weng's,Beta,Class-I generalized mathematical,and Hu-Chen models.The Vapor pressure and Beta models are optimal for forecasting the annual productivity of wells(APW)from gas-bearing low-permeability tight sandstone reservoirs.The Wang-Li,Beta,and Yu QT tb models are apt for moderate-to-small-reserves,single low-permeability tight sandstone gas reservoirs.The Rayleigh,Hu-Chen,and generalized Weng's models are suitable for condensate gas reservoirs.For medium-to-high-permeability sandstone gas reservoirs,the lognormal,generalized gamma,and Beta models are recommended. 展开更多
关键词 production prediction Life cycle model Carbonate gas reservoir Low-permeability tight sandstone gas reservoir
下载PDF
Exploring pore-scale production characteristics of oil shale after CO_(2) huff‘n’puff in fractured shale with varied permeability
18
作者 Tianhan Xu Jian Wang +3 位作者 Yuhao Lu Danling Wang Li Yu Ye Tian 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期194-203,共10页
Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchang... Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchange processes in subsurface formations,there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability.This study aims to experimentally investigate the CO_(2) diffusion behaviors and in situ oil recovery through a CO_(2) huff‘n’puff process in the Jimsar shale oil reservoir.To achieve this,we designed three matrix-fracture models with different permeabilities(0.074 mD,0.170 mD,and 0.466 mD)and experimented at 30 MPa and 91℃.The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance(LF-NMR)technique to quantify in situ oil recovery and elucidate mass-exchange behaviors.The results showed that after three cycles of CO_(2) huff‘n’puff,the total recovery degree increased from 30.28%to 34.95%as the matrix permeability of the core samples increased from 0.074 to 0.466 mD,indicating a positive correlation between CO_(2) extraction efficiency and matrix permeability.Under similar fracture conditions,the increase in matrix permeability further promoted CO_(2) extraction efficiency during CO_(2) huff‘n’puff.Specifically,the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores,which increased from 16.42%to 36.64%.The findings from our research provide valuable insights into the CO_(2) huff‘n’puff effects in different pore sizes following fracturing under varying permeability conditions,shedding light on the mechanisms of CO_(2)-enhanced oil recovery in fractured shale oil reservoirs. 展开更多
关键词 Shale reservoir Hydraulic fracturing CO_(2)huff‘n’puff NMR production characteristics
下载PDF
Numerical study on gas production via a horizontal well from hydrate reservoirs with different slope angles in the South China Sea
19
作者 Tingting Luo Jianlin Song +5 位作者 Xiang Sun Fanbao Cheng Madhusudhan Bangalore Narasimha Murthy Yulu Chen Yi Zhao Yongchen Song 《Deep Underground Science and Engineering》 2024年第2期171-181,共11页
It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China... It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs. 展开更多
关键词 effective stress low‐permeability reservoirs natural gas hydrate production numerical simulation SETTLEMENT slope angle the South China
下载PDF
Improving Supply Chain Strategies towards Mitigating the Effect of Crude Oil Theft and Pipeline Vandalism in the Nigerian Oil and Gas Industry: A Case Study of the Nigerian National Petroleum Corporation (NNPC)
20
作者 Ruth Agwom Panle 《Open Journal of Yangtze Oil and Gas》 2024年第3期75-93,共19页
Generically, SCM may be said to include all activities carried out to ensure proper functioning of the supply chain. The activities included in proper management of a supply chain broadly include logistics activities,... Generically, SCM may be said to include all activities carried out to ensure proper functioning of the supply chain. The activities included in proper management of a supply chain broadly include logistics activities, planning and control of the flow of information and materials in a firm, management of relationships with other organizations and government intervention, However, crude oil theft and pipeline vandalism are established products supply chain disruptors in Nigeria which are rendering the task of running an efficient petroleum supply chain onerous. This paper aims to establish the importance of effective supply chain strategies for companies in the oil and gas industry with special focus on the Nigerian oil and gas sector and the strategies by which the state oil and gas corporation in this sector may mitigate disruptions to its supply chain. This study investigates the enhancement of supply chain strategies towards meeting the challenge of crude oil theft and pipeline vandalism, using the Nigerian National Corporation (NNPC) as a case study. Based on this study, data were collected from two sources: A summary of incident reports obtained from NNPC and an interview with personnel in the PPMC Department. Incident report refers to a report produced when accidents such as equipment failure, injury, loss of life, or fire occur at the work site. Content analysis is utilized to evaluate data obtained from interview responses, CBN financial stability reports, NDIC annual reports, circulars, banking supervision reports and implementation guidelines. The study found out that NNPC should endeavor to sustain its value chain and ward of pipeline vandals and crude oil thieves by engaging in community partnership, detailing security outfits to ensure its pipelines’ right of way and bridging. Concluded that the oil supply chain of the Nigerian National Petroleum Corporation has been plagued by disruptions in the form of crude oil theft and pipeline vandalism which has had debilitating effects on its value. 展开更多
关键词 Supply Chain Strategies Management production Crude oil THEFT Pipeline Vandalism Information Technology Operations
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部