期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Influence of lithospheric thickness distribution on oil and gas basins,China seas and adjacent areas
1
作者 Jing Ma Wanyin Wang +4 位作者 Hermann Zeyen Yimi Zhang Zhongsheng Li Tao He Dingding Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期1-14,共14页
The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and ... The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas. 展开更多
关键词 China seas and adjacent areas lithospheric thickness oil and gas basins
下载PDF
Influence of the Moho surface distribution on the oil and gas basins in China seas and adjacent areas 被引量:1
2
作者 Yimi Zhang Wanyin Wang +5 位作者 Linzhi Li Xingang Luo Dingding Wang Tao He Feifei Zhang Jing Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期167-188,共22页
Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho charact... Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities. 展开更多
关键词 China Seas and adjacent areas Moho surface oil and gas basins
下载PDF
Analysis of the world deepwater oil and gas exploration situation
3
作者 WEN Zhixin WANG Jianjun +5 位作者 WANG Zhaoming HE Zhengjun SONG Chengpeng LIU Xiaobing ZHANG Ningning JI Tianyu 《Petroleum Exploration and Development》 SCIE 2023年第5期1060-1076,共17页
The global trends in deepwater oil and gas exploration,characteristics of deepwater oil and gas discovery,and layout of deepwater oil and gas exploration business by seven major international oil companies are systema... The global trends in deepwater oil and gas exploration,characteristics of deepwater oil and gas discovery,and layout of deepwater oil and gas exploration business by seven major international oil companies are systematically analyzed using commercial databases(e.g.S&P Global and Rystad)and public information of oil companies.The deepwater area is currently the most important domain for global oil and gas exploration and discovery,with the most discoveries and reserves in passive continental margin basins.The deepwater discoveries have the greatest contribution to the total newly discovered oil and gas reserves in the sea areas,with an increasing number of lithological reservoirs discovered,and oil and gas discoveries mainly distributed in the Mesozoic–Cenozoic.The seven major international oil companies are widely active in various aspects of deepwater oil and gas exploration and development,and play a leading role.Based on years of theoretical understanding of global oil and gas geology and resource evaluation,it is proposed that favorable deepwater exploration areas in the future will mainly focus on three major areas:the Atlantic coast,the Indian Ocean periphery,and the Arctic Ocean periphery.Six suggestions are put forward for expanding overseas deepwater oil and gas exploration business:first,expand the sources for obtaining multi-user seismic data and improve the scientific selection of deepwater exploration areas;second,increase efforts to obtain deepwater exploration projects in key areas;third,adopt various methods to access into/exit from resource licenses flexibly;fourth,acquire licenses with large equity and operate in“dual-exploration”model;fifth,strengthen cooperation with leading international oil companies in deepwater technology;and sixth,improve business operation capabilities and gradually transform from“non-operators”to“operators”. 展开更多
关键词 world petroliferous basins DEEPWATER oil and gas exploration situation international oil companies favorable exploration areas
下载PDF
Criterions and Measures of Route Selection of Shallowly Embedded Long-Distance Oil and Gas Pipeline in Mountain Areas 被引量:1
4
作者 WANG Chenghua MA Qingwen +2 位作者 KONG Jiming CHEN Zefu LI Xiuzhen 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期787-792,共6页
According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The fo... According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment. 展开更多
关键词 shallowly embedded long-distance oil and gas pipeline criterions and measures of route selection avoiding geological hazards
下载PDF
Geological characteristics of unconventional tight oil reservoir (10^(9) t): A case study of Upper Cretaceous Qingshankou Formation, northern Songliao Basin, NE China
5
作者 Li-zhi Shi Zhuo-zhuo Wang +4 位作者 Zhan-tao Xing Shan Meng Shuai Guo Si-miao Wu Li-yan Luo 《China Geology》 CAS CSCD 2024年第1期51-62,共12页
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r... The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area. 展开更多
关键词 Unconventional oil and gas Tight oil Thin-bedded mudstone-siltstone-sandstone reservoir Qijia area Qingshankou Formation oil and gas exploration engineering Songliao Basin Daqing oilfield
下载PDF
Major Fields and Areas to Draw PetroChina's Oil and Gas Exploration Efforts
6
《China Oil & Gas》 CAS 2001年第4期30-31,共2页
关键词 ROCK Major Fields and areas to Draw PetroChina’s oil and gas Exploration Efforts
下载PDF
“Exploring petroleum inside source kitchen”: Connotation and prospects of source rock oil and gas 被引量:5
7
作者 YANG Zhi ZOU Caineng 《Petroleum Exploration and Development》 2019年第1期181-193,共13页
Based on the transitional background of the global energy structure, exploration and development of unconventional oil and gas, and investigation of key basins, the unconventional oil and gas resources are divided int... Based on the transitional background of the global energy structure, exploration and development of unconventional oil and gas, and investigation of key basins, the unconventional oil and gas resources are divided into three types: source rock oil and gas, tight oil and gas, and retention and accumulated oil and gas. Source rock oil and gas resources are the global strategic supplies of oil and gas, the key resource components in the second 150-year life cycle of the future petroleum industry, and the primary targets for "exploring petroleum inside source kitchen". The geological connotation of source rock oil and gas was proposed, and the models of source rock oil and gas generation, expulsion and accumulation were built, and five source rock oil and gas generation sections were identified, which may determine the actual resource potential under available technical conditions. The formation mechanism of the "sweet sections" was investigated, that is, shale oil is mainly accumulated in the shale section that is close to the oil generation section and has higher porosity and permeability, while the "sweet sections" of coal-bed methane(CBM) and shale gas have self-contained source and reservoir and they are absorbed in coal seams or retained in the organic-rich black shale section, so evaluation and selection of good "sweet areas(sections)" is the key to "exploring petroleum inside source kitchen". Source rock oil and gas resources have a great potential and will experience a substantial growth for over ten world-class large "coexistence basins" of conventional-unconventional oil and gas in the future following North America, and also will be the primary contributor to oil stable development and the growth point of natural gas production in China, with expected contribution of 15% and 30% to oil and gas, respectively, in 2030. Challenges in source rock oil and gas development should be paid more attention to, theoretical innovation is strongly recommended, and a development pilot zone can be established to strengthen technology and promote national support. The source rock oil and gas geology is the latest progress of the "source control theory" at the stage of unconventional oil and gas. It will provide a new theoretical basis for the new journey of the upstream business in the post-industry age. 展开更多
关键词 SOURCE rock oil and gas SHALE gas SHALE oil coal-bed methane SWEET section SWEET area SOURCE control theory man-made oil and gas reservoir UNCONVENTIONAL oil and gas revolution large“coexistence basins”of conventional-unconventional oil and gas
下载PDF
State of art of seismic design and seismic hazard analysis for oil and gas pipeline system 被引量:2
8
作者 Aiwen Liu Kun Chen Jian Wu 《Earthquake Science》 CSCD 2010年第3期259-263,共5页
The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can... The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can be classified into three pipe classes,with exceeding probabilities over 50 years of 2%,5% and 10%,respectively.Performance-based design requires more information about ground motion,which should be obtained by evaluating seismic safety for pipeline engineering site.Different from a city's water pipeline network,the long-distance oil and gas pipeline system is a spatially linearly distributed system.For the uniform confidence of seismic safety,a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk.Considering the uncertainty of earthquake magnitude,the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis(DSHA).A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia.The estimation of fault displacement for a refined oil pipeline in Wenchuan MS8.0 earthquake is introduced as an example in this paper. 展开更多
关键词 seismic hazard assessment oil and gas pipeline fault displacement
下载PDF
New Progress of Oil and Gas Research in the Tonghua Area, East of the Songliao Basin 被引量:2
9
作者 WANG Dandan ZHOU Xingui +4 位作者 LI Shizhen ZHANG Wenhao LIU Weibin DONG Qingshui MENG Yuanlin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第4期1507-1508,共2页
The Tonghua region in the east of the Songliao Basin is a high-risk and blank area of petroleum exploration. The unrevealed key problems including the growth of source rocks, hydrocarbon generation potential and oil a... The Tonghua region in the east of the Songliao Basin is a high-risk and blank area of petroleum exploration. The unrevealed key problems including the growth of source rocks, hydrocarbon generation potential and oil and gas source and the low exploration degree have constrained the further study of petroleum geological conditions and exploration deployment. Based on outcrop and core observations, geological section survey, trench exploration, high-precision gravity and magnetism and geological survey wells, this work discussed the basic geological conditions, main hydrocarbon source rocks, hydrocarbon generation potential and the oil and gas source. 展开更多
关键词 area WELL ROCK New Progress of oil and gas Research in the Tonghua Area East of the Songliao Basin
下载PDF
Analysis of the world oil and gas exploration situation in 2021 被引量:2
10
作者 DOU Lirong WEN Zhixin +4 位作者 WANG Jianjun WANG Zhaoming HE Zhengjun LIU Xiaobing ZHANG Ningning 《Petroleum Exploration and Development》 CSCD 2022年第5期1195-1209,共15页
The global exploration investment, new oil and gas discoveries, exploration business adjustment strategies of oil companies in 2021, and future favorable exploration domains are systematically analyzed using commercia... The global exploration investment, new oil and gas discoveries, exploration business adjustment strategies of oil companies in 2021, and future favorable exploration domains are systematically analyzed using commercial databases such as IHS and public information of oil companies. It has been found that the world oil and gas exploration situation in 2021 has continued the downturn since the outbreak of COVID-19. The investment and drilling workload decreased slightly, but the success rate of exploration wells, especially deepwater exploration wells, increased significantly, and the newly discovered reserves increased slightly compared with last year. Deep waters of the passive continental margin basins are still the leading sites for discovering conventional large and medium-sized oil and gas fields. The conventional oil and gas exploration in deep formations of onshore petroliferous basins has been keeping a good state, with tight/shale oil and gas discoveries made in Saudi Arabia, Russia, and other countries. While strengthening the exploration and development of local resources, national, international, and independent oil companies have been focusing on major overseas frontiers using their advantages, including risk exploration in deep waters and natural gas. Future favorable exploration directions in the three major frontiers, the global deep waters, deep onshore formations, and unconventional resources, have been clarified. Four suggestions are put forward for the global exploration business of Chinese oil companies: first, a farm in global deepwater frontier basins in advance through bidding at a low cost and adopt the “dual exploration model” after making large-scale discoveries;second, enter new blocks of emerging hot basins in the world through farm-in and other ways, to find large oil and gas fields quickly;third, cooperate with national oil companies of the resource host countries in the form of joint research and actively participate exploration of deep onshore formations of petroliferous basins;fourth, track tight/shale oil and gas cooperation opportunities in a few countries such as Saudi Arabia and Russia, and take advantage of mature domestic theories and technologies to farm in at an appropriate time. 展开更多
关键词 exploration investment exploration situation new discoveries favorable exploration areas overseas oil and gas exploration deep water deep formation unconventional resources
下载PDF
GC-MS Analysis of Volatile Oils in Mango Leaves from Different Producing Areas 被引量:1
11
作者 Xu FENG Chuanxian QIN +2 位作者 Qingxia HUANG Chengzhi DU Chenyan LIANG 《Medicinal Plant》 CAS 2021年第3期27-29,35,共4页
[Objectives]To analyze the composition of volatile oils from mango leaves from different producing areas.[Methods]The volatile oils in mango leaves from different areas was extracted by steam distillation,and the GC-M... [Objectives]To analyze the composition of volatile oils from mango leaves from different producing areas.[Methods]The volatile oils in mango leaves from different areas was extracted by steam distillation,and the GC-MS method combined with retention index and peak area normalization method was used for qualitative and quantitative analysis.[Results]The volatile oils of mango leaves in southern provinces contained high content of terpenes,such asα-gurjunene(18.39%-34.13%),(+)-viridiflorene(8.95%-16.30%)and(E)-β-ocimene(3.49%-7.63%).The volatile oils components of mango leaves were significantly different in different provinces,for example,mango leaves produced in Hainan Province contained a large amount ofβ-selinene(23.00%),but not in other provinces.[Conclusions]The origin had a great influence on the composition and contents of volatile oils in mango leaves. 展开更多
关键词 Mango leaves Volatile oils gas chromatography-mass spectrometry Different producing areas
下载PDF
Opportunities and Challenges of Robotics and Automation in Offshore Oil &Gas Industry 被引量:1
12
作者 Heping Chen Samuel Stavinoha +2 位作者 Michael Walker Biao Zhang Thomas Fuhlbrigge 《Intelligent Control and Automation》 2014年第3期136-145,共10页
The oil and gas industry will continue to boom in the coming few decades. Obtaining oil and gas from conventional and non-conventional resources will become more and more challenging. This intensifying need will impos... The oil and gas industry will continue to boom in the coming few decades. Obtaining oil and gas from conventional and non-conventional resources will become more and more challenging. This intensifying need will impose very considerable demands on work force, financial and technology capabilities. Since the future supplies of oil and gas are to expand, advanced technology will become increasingly necessary to obtain access to more challenging conventional and non-conventional resources. Therefore oil and gas technologies will be very costly to operate in the coming future due to hostile, hard-to-reach environments. The offshore oil industry will become a complicated myriad of advanced equipment, structures, and work force. Our objectives are to identify potential applications and research directions of robotics and automation in the oil & gas field and explore the obstacles and challenges of robotic and automation applications to this area. This study performs the necessary survey and investigation about the work conditions of robotics and automation equipment in the oil and gas industry, especially offshore oil rigs. The oil & gas industry processes are first investigated. The personals and tasks are then explored. Furthermore, this paper reviews the current robotic automation technology. The challenges and requirements are identified for robotics and automation equipment in the oil and gas industry. The requirements of robotics and automation in the oil & gas industry are presented. Future research opportunities are discussed from a technical perspective. 展开更多
关键词 oil & gas Robot Automation hazardous Environment TELEOPERATION OFFSHORE oil & gas Industry
下载PDF
Study on the Environmental Impact of Oil and Gas Field Development on the Ecological Red Line Area 被引量:1
13
作者 Yunshi XIONG Zhihong GUO +1 位作者 Tao LIANG Qichen GAO 《Meteorological and Environmental Research》 CAS 2020年第3期70-73,80,共5页
To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in ... To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in survey,containing complex type and numerous amount of ecologically sensitive space and ecological red line involved in oil and gas field enterprises,scientific nature of delimitation,lack of strong support of laws and regulations for forced withdrawal of oil and gas production facilities in these areas,some countermeasures and suggestions were proposed,such as further evaluating and combing scope and functional zoning of existing environmentally sensitive areas and ecological red lines,treating differently,enhancing pertinence of prohibition in ecologically sensitive regions,declining blindness of the withdrawal of oil and gas facilities in environmentally sensitive areas,strengthening seriousness of approval of exploration and mining rights of oil and gas resources,and establishing strategic reserve exploration and hierarchical development mechanism. Moreover,oil and gas field enterprises should integrate more efforts to ① accelerate to find out the current situation of environmental quality,② adhere to developing in protection,and protecting in development,③ increase attention and participation strengthen of providing technical support for national oil and gas exploration and development strategy evaluation,④ accelerate communication and docking with local governments on the ecological red line,⑤ actively strive to be included in the positive list management of local governments,⑥ accelerate to establish and perfect primary database of oil and gas production and facilities construction,and ⑦ document management information system of the ecological red line. 展开更多
关键词 oil and gas fields Exploration and development Ecological red line Environmentally sensitive area Environmental effect
下载PDF
Distribution and Characteristics of Hazardous Geological Features in the Marine Coastal and Offshore Areas of Zhejiang Province, East China Sea
14
作者 QIU Jiandong LIU Jian +2 位作者 YUE Nana WANG Shuang MAI Duc Dong 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第6期1318-1324,共7页
Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shall... Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shallow gas, sand ridges, erosion ditches, scarps, irregular bedrock features, underwater shoals, buried paleo-channels, and submarine deltas. Based on the seismic profiles, we have constructed a marine geological map of these hazardous features. Shallow gas accumulations are common and occur mainly in two separate nearshore regions that cover 4613 and 3382 km^2 respectively. There are also scattered shallow gas accumulations in the offshore area, typically accompanied by paleo-channels that occur mainly in the middle of the study area. Sand ridges, erosion ditches, scarps, and irregular bedrock features are found mainly in the northeast of the study area in association with each other. In the southeastern part of the study area, the sand ridges have a linear form and trend NW–SE, representing the western part of the linear sand ridges in the East China Sea. The maximum slope gradient is 1?, which suggests that this area is prone to landslides. These hazardous marine geological features are important to marine and engineering activities in this region. 展开更多
关键词 hazardous MARINE GEOLOGICAL features SHALLOW gas COASTAL and OFFSHORE areas East China Sea
下载PDF
Growth behavior and resource potential evaluation of gas hydrate in core fractures in Qilian Mountain permafrost area, Qinghai-Tibet Plateau 被引量:1
15
作者 Qing-guo Meng Chang-ling Liu +5 位作者 Zhen-quan Lu Xi-luo Hao Cheng-feng Li Qing-tao Bu Yun-kai Ji Jia-xian Wang 《China Geology》 CAS CSCD 2023年第2期208-215,共8页
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.U... The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area. 展开更多
关键词 gas hydrate Growth behavior Core fracture Rock Quality Designation Resource potential evaluation Engineering oil and gas exploration Qilian Mountain permafrost area Qinghai-Tibet Plateau
下载PDF
Geological Characteristics of Oil and Gas Reservoirs in the Songpan-Aba Area,SW China
16
作者 CAI Liguo YE Deliao LIU Guangxiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期655-662,共8页
The Songpan-Aba area, similar to those basins on the Yangtze block, following the rifting and separation of the Yangtze block, gradually developed into a passive marginal basin on a passive continent margin in Early P... The Songpan-Aba area, similar to those basins on the Yangtze block, following the rifting and separation of the Yangtze block, gradually developed into a passive marginal basin on a passive continent margin in Early Paleozoic, and later, with the Qinling-Qilian oceanic crust subduction and ocean closure, the Caledonides were formed and the foreland basin was superimposed upon. Being influenced by the Paleo-Tethyan extension, intra-continental rifting-margin basins were formed in Late Paleozoic. Following the formation of peripheral orogenic belt, the Upper Triassic again superimposed the foreland basin. The Mesozoic and Cenozoic overprinted the faulted basin, forming the Qinghai-Tibet Plateau domes. Hydrocarbon source rock in the Early Paleozoic passive basin, the Upper Paleozoic platform carbonates and the Triassic mudstones comprise the main source-reservoircap combination. Each layer of this area is at the advanced stage of diagenetic evolution, being entered the middle and late diagenetic stages, and anadiagenetic stage. Besides the highly matured Triassic and Permian in Zoige and Hongyuan, almost all the area is at the early stage of over maturatation, generating much methane. This area has the potential for oil and gas. 展开更多
关键词 Songpan-Aba area passive margin basin foreland basin oil and gas potential
下载PDF
Rapid Laboratory Comparison Method for Identification of Hazardous Wastes from Illegal Oil Refining
17
作者 Hao Lihong Zhang Qingfang +2 位作者 Cai Xuankun Yang Yue Liu Guiqing 《Meteorological and Environmental Research》 CAS 2019年第5期1-3,共3页
[Objective] This paper aimed to study the rapid identification method of hazardous wastes from illegal oil refining,and provide a new theoretical basis and practical basis for shortening the appraisal cycle and reduci... [Objective] This paper aimed to study the rapid identification method of hazardous wastes from illegal oil refining,and provide a new theoretical basis and practical basis for shortening the appraisal cycle and reducing the cost of identification.[Method] The identified substance and the qualified oil products were diluted by carbon disulfide with a ratio of 1∶100 for the gas chromatographic analysis.According to the corresponding national standard,the oil change indexes,such as the moisture content,viscosity,acid value and mechanical impurities of the identified substance,were measured.[Result] By the comparison between the gas chromatogram spectrograms of the identified substance and the qualified oil,it is found that the main component of the identified substance was the mineral oils.And the test results of oil change index showed that the mineral oil was unqualified.[Conclusion] This method was of great significance to save the cost of appraisal and improve the efficiency of case handling. 展开更多
关键词 ILLEGAL oil REFINING IDENTIFICATION of hazardous WASTES gas CHROMATOGRAPHY
下载PDF
Integrated Reservoir Prediction and Oil-Gas Evaluation in the Maoshan Area
18
作者 HAO Peidong CUI Xiuqin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期697-700,共4页
The Maoshan area is an area with well-developed igneous rocks and complex structures. The thickness of the reservoirs is generally small. The study of the reservoirs is based on seismic data, logging data and geologic... The Maoshan area is an area with well-developed igneous rocks and complex structures. The thickness of the reservoirs is generally small. The study of the reservoirs is based on seismic data, logging data and geological data. Using techniques and software such as Voxelgeo, BCI, RM, DFM and AP, the authors have made a comprehensive analysis of the lateral variation of reservoir parameters in the Upper Shazu bed of the third member of the Palaeogene Funing Formation, and compiled the thickness map of the Shazu bed. Also, with the data from ANN, BCI and the abstracting method for seismic characteristic parameters in combination with the structural factors, the authors have tried the multi-parameter and multi-method prediction of petroleum, delineated the potential oil and gas areas and proposed two well sites. The prediction of oil and gas for Well JB2 turns out to be quite successful. 展开更多
关键词 integrated reservoir prediction oil and gas evaluation Maoshan area Northern Jiangsu basin
下载PDF
Risk Matrix as a Tool for Risk Analysis in Underwater Operations in the Oil and Gas Industry
19
作者 John A. Jia Ify L. Nwaogazie Brilliance O. Anyanwu 《Journal of Environmental Protection》 CAS 2022年第11期856-869,共14页
The study is a cross-sectional design assessment of the likelihood, frequency and severity of hazards associated with underwater operations in the Niger Delta. Five oil and gas companies were used for this study selec... The study is a cross-sectional design assessment of the likelihood, frequency and severity of hazards associated with underwater operations in the Niger Delta. Five oil and gas companies were used for this study selected by a purposive method given that they had the highest number of workers involved in underwater operations. A sample size of 418 was computed to which the questionnaires were administered with response rate of 95.93%. Data analyses were carried out to cover descriptive statistics, analysis of variance and Pearsonal correlation coefficients. The 4 by 4 risk assessment matrix for the likelihood and consequences showed that 8 out of 20 underwater hazards were categorized as having very high risk according to their risk ratings. The eight hazards categorized based on their risk IDs were H01, H03, H04, H08, H10, H11, H12, and H15. The 4 by 4 risk matrix for frequency and consequences revealed that two hazards (Piracy & bandit attack/kidnapping (H01) and Other main vessels/heavy object dropping or falling load/collision (H08)) were identified to be of very high risk. 展开更多
关键词 Risk Matrix Risk Analysis Hazards RISKS UNDERWATER Operations oil and gas Industry
下载PDF
Study on Connection of Spatial Planning of Oil and Gas Infrastructure and Environmental Sensitive Area
20
作者 Tao LIANG Yunshi XIONG +2 位作者 Zhihong GUO Xilan WU Qicheng GAO 《Meteorological and Environmental Research》 CAS 2020年第4期21-25,共5页
By analyzing the influence of pollution factors in each process on the environmentally sensitive area in construction and operation of oil and gas infrastructure,main problems were obtained:delimitation and implementa... By analyzing the influence of pollution factors in each process on the environmentally sensitive area in construction and operation of oil and gas infrastructure,main problems were obtained:delimitation and implementation of three control lines in land space planning,relevant environmental protection laws and regulations not perfect and specific,delimitation of environmentally sensitive area lack of sufficient demonstration,"conditional permission to pass"not be raised to an explicit provision,urban energy corridor planning not fully implement the concept of environmental protection,and the idea of adjacent spatial planning not be implemented yet.Moreover,it put forward countermeasures and suggestions for the construction department of oil and gas infrastructure. 展开更多
关键词 oil and gas infrastructure Environmental sensitive area Ecological protection red line Countermeasure and suggestion
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部