期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
Dynamic simulation of differential accumulation history of deep marine oil and gas in superimposed basin:A case study of Lower Paleozoic petroleum system of Tahe Oilfield,Tarim Basin,NW China
1
作者 LI Bin ZHONG Li +4 位作者 LYU Haitao YANG Suju XU Qinqi ZHANG Xin ZHENG Binsong 《Petroleum Exploration and Development》 SCIE 2024年第5期1217-1231,共15页
According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the p... According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin. 展开更多
关键词 superimposed basin Tarim Basin marine carbonate rock oil and gas differential accumulation dynamic accumulation simulation fluid potential technology Tahe oilfield Lower Paleozoic petroleum system simulation deep and ultra-deep strata
下载PDF
A STAMP-Game model for accident analysis in oil and gas industry
2
作者 Huixing Meng Xu An +4 位作者 Daiwei Li Shijun Zhao Enrico Zio Xuan Liu Jinduo Xing 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2154-2167,共14页
Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Ba... Accidents in engineered systems are usually generated by complex socio-technical factors.It is beneficial to investigate the increasing complexity and coupling of these factors from the perspective of system safety.Based on system and control theories,System-Theoretic Accident Model and Processes(STAMP)is a widely recognized approach for accident analysis.In this paper,we propose a STAMP-Game model to analyze accidents in oil and gas storage and transportation systems.Stakeholders in accident analysis by STAMP can be regarded as players of a game.Game theory can,thus,be adopted in accident analysis to depict the competition and cooperation between stakeholders.Subsequently,we established a game model to study the strategies of both supervisory and supervised entities.The obtained results demonstrate that the proposed game model allows for identifying the effectiveness deficiency of the supervisory entity,and the safety and protection altitudes of the supervised entity.The STAMP-Game model can generate quantitative parameters for supporting the behavior and strategy selections of the supervisory and supervised entities.The quantitative data obtained can be used to guide the safety improvement,to reduce the costs of safety regulation violation and accident risk. 展开更多
关键词 Accident analysis STAMP System engineering Gametheory oil and gas storage and transportation SYSTEMS
下载PDF
Formation,evolution,reconstruction of black shales and their influence on shale oil and gas resource
3
作者 Shi-zhen Li Qiu-chen Xu +11 位作者 Mu Liu Guo-heng Liu Yi-fan Li Wen-yang Wang Xiao-guang Yang Wei-bin Liu Yan-fei An Peng Sun Tao Liu Jiang-hui Ding Qian-chao Li Chao-gang Fang 《China Geology》 CAS CSCD 2024年第3期551-585,共35页
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en... Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment. 展开更多
关键词 Black shales Shale oil and gas Resource effects Sedimentary environment Sedimentary process Organic matter accumulation Diagenetic evolution Thermal evolution Organic matter and inorganic minerals Tectonic reconstruction oil and gas exploration engineering VEINS Fluid activity
下载PDF
Origin and accumulation of high-maturity oil and gas in deep parts of the Baxian Depression, Bohai Bay Basin, China 被引量:11
4
作者 Zhao Xianzheng Jin Qiang +5 位作者 Jin Fengming Ma Peng Wang Quan Wang Jing Ren Chunling Xi Qiuling 《Petroleum Science》 SCIE CAS CSCD 2013年第3期303-313,共11页
Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarb... Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarbons discovered in the Bohai Bay Basin in eastern China. This discovery suggests favorable exploration prospects for the deep parts of the basin. However, the discovery raises questions regarding the genesis and accumulation of hydrocarbons in deep reservoirs. Based on the geochemical features of the hydrocarbons and characteristics of the source rocks as well as thermal simulation experiments of hydrocarbon generation, we conclude that the oil and gas were generated from the highly mature Sha-4 Member (Es4) source rocks instead of thermal cracking of crude oils in earlier accumulations. The source kitchen with abnormal pressures and karsted carbonate reservoirs control the formation of high-maturity hydrocarbon accumulations in the buried hills (i.e., Niudong-1) in conjunction with several structural-lithologic traps in the ES4 reservoirs since the deposition of the upper Minghuazhen Formation. This means the oil and gas exploration potential in the deep parts of the Baxian Depression is probably high. 展开更多
关键词 High mature oil and gas ORIGIN accumulation deep part of Baxian Depression
下载PDF
Discussion of the Mode and Mechanism of Oil and Gas Accumulation in the Nanbaxian Pool in the North of the Qaidam Basin 被引量:1
5
作者 Li Fengjun Luo Qun +2 位作者 Chen Shulan Liu Yunhon Tian Fenghua 《Petroleum Science》 SCIE CAS CSCD 2005年第4期1-8,共8页
Because of the difference ofoil and gas accumulation condition between the hanging wall and the footwall of a fault, there is a peculiar accumulation mechanism that oil and gas mainly exists in the hanging wall of the... Because of the difference ofoil and gas accumulation condition between the hanging wall and the footwall of a fault, there is a peculiar accumulation mechanism that oil and gas mainly exists in the hanging wall of the basement fault, but in the footwall of the shallow detachment fault in the Nanbaxian pool. The oil and gas of the Nanbaxian pool came from the mature Jurassic hydrocarbon source rock of the Yibei depression located at the south of the Nanbaxian pool. Firstly, the oil and gas accumulated in the traps of the hanging wall of the basement fault by way of the unconformity and the basement faults, and turned into some primary deep pools; and then, the shallow detachment fault that formed in the later tectonic movement broke into the deep primary pools, which caused the oil and gas migration upwards along the basement faults and the shallow detachment faults and the evolvement into some secondary oil and gas pools later. The history of the Nanbaxian oil and gas accumulation can be summarized successively as the syndepositional upheaval controlled by faults; single hydrocarbon source rock; unconformities and faults as migration channels; buoyancy, overpressure and tectonic stress as dynamic forces; multistage migration and accumulation of oil and gas; and finally an overlapped double-floor pattern of oil and gas accumulation. The most important explorative targets in the north of the Qaidam Basin are traps connected with the primary pools in the footwall by shallow detachment faults. 展开更多
关键词 Qaidam Basin Nanbaxian oil and gas pool mechanism of reservoir formation accumulation mode
下载PDF
The accumulation characteristics and exploration potential of oil and gas in the back-arc basin of Japan under the background of high heat flow
6
作者 Jian-qiang Wang Jie Liang +10 位作者 Jian-wen Chen Qing-fang Zhao Yin-guo Zhang Jian-wei Zhang Sen Li Chang-qing Yang Jian Zhang Jing Sun Chuan-sheng Yang Yong Yuan Lee-Jel Jiang 《China Geology》 CAS CSCD 2023年第4期660-675,共16页
The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environ... The Sea of Japan is located in the southeast margin of Eurasia, in the triangle area of the western Pacific Ocean. Due to the interaction of the Pacific plate, Eurasian plate and Philippine plate, its tectonic environment is complex, forming a typical trench-arc-basin system. At present, 148 oil and gas fields have been discovered in Japan, with an oil and gas resource of 255.78×10^(6) t, showing a good prospect for oil and gas exploration. Based on the previous research and the recently collected geological and geophysical data, the characteristics of tectonic-sedimentary evolution and geothermal field in the basins around the Sea of Japan are analyzed. The results show that the tectonic evolution of the basin is mainly controlled by plate subduction and back-arc oceanic crust expansion, and it mainly undergone four tectonic-sedimentary evolution stages: Subduction period, basin development period, subsidence period and compression deformation period. The overall heat flow value of Japan Sea is high, and it is distributed annularly along Yamato Ridge. The geothermal heat flow value is about 50–130 MW/m^(2), and the average heat flow is75.9±19.8 MW/m^(2), which has a typical “hot basin ”. The high heat flow background provides unique thermal evolution conditions for hydrocarbon generation, which leads to the high temperature and rapid evolution. The authors summarized as “early hydrocarbon generation, rapid maturity and shallow and narrow hydrocarbon generation window”. The type of oil and gas is mainly natural gas, and it mainly distributed in Neogene oil and gas reservoirs. The trap types are mainly structural traps, lithologic traps and composite traps. In addition, the pre-Neogene bedrock oil and gas reservoirs also show a good exploration prospect. The resource prospecting indicates that Niigata Basin, Ulleung Basin and kitakami Basin are the main target areas for future exploration and development. 展开更多
关键词 oil and gas Hydrocarbon generation capacity Back-arc basin Geothermal field Tectono-sedimentary evolution Hydrocarbon accumulation The Sea of Japan Western Pacific
下载PDF
Oil and gas source and accumulation of Zhongqiu 1 trap in Qiulitage structural belt, Tarim Basin, NW China
7
作者 LI Jian LI Jin +7 位作者 XIE Zengye WANG Chao ZHANG Haizu LIU Mancang LI Dejiang MA Wei MAO Danfeng ZENG Xu 《Petroleum Exploration and Development》 2020年第3期548-559,共12页
Well Zhongqiu 1 obtained highly productive oil-gas stream in the footwall of Zhongqiu structure, marking the strategic breakthrough of Qiulitag structural belt in the Tarim Basin. However, the oil and gas sources in Z... Well Zhongqiu 1 obtained highly productive oil-gas stream in the footwall of Zhongqiu structure, marking the strategic breakthrough of Qiulitag structural belt in the Tarim Basin. However, the oil and gas sources in Zhongqiu structural belt and the reservoir formation process in Zhongqiu 1 trap remain unclear, so study on these issues may provide important basis for the next step of oil and gas exploration and deployment in Qiulitage structural belt. In this study, a systematic correlation of oil and gas source in Well Zhongqiu 1 has been carried out. The oil in Well Zhongqiu 1 is derived from Triassic lacustrine mudstone, while the gas is a typical coal-derived gas and mainly from Jurassic coal measures. The oil charging in Well Zhongqiu 1 mainly took place during the sedimentary period from Jidike Formation to Kangcun Formation in Neogene, and the oil was mainly contributed by Triassic source rock;large-scale natural gas charging occurred in the sedimentary period of Kuqa Formation in Neogene, and the coal-derived gas generated in the late Jurassic caused large-scale gas invasion to the early Triassic crude oil reservoirs. The Zhongqiu 1 trap was formed earlier than or at the same period as the hydrocarbon generation and expulsion period of Triassic-Jurassic source rocks. Active faults provided paths for hydrocarbon migration. The source rocks-faults-traps matched well in time and space. Traps in the footwall of the Zhongqiu structural fault have similar reservoir-forming conditions with the Zhongqiu 1 trap, so they are favorable targets in the next step of exploration. 展开更多
关键词 Tarim Basin Kuqa foreland thrust belt Qiulitage structural belt oil and gas source oil and gas accumulation Zhongqiu1 trap
下载PDF
The challenges facing the oil and gas storage and transportation technology and its developing direction
8
作者 Xu Xin Cao Ying 《International English Education Research》 2015年第1期28-30,共3页
In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in t... In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in the lands, the technologies for the development of the offshore oil mining are particularly important. Among these problems, after the exploitation, the storage and transportation of the offshore oil and gas is worthy of the discussion of the technical personnel. From the experience of the oil and gas storage and transportation in the long years, in some environmentally degraded areas, there are problems in the efficiency and safety in the long pipeline transportation and the oil and gas mixed transportation, and in the transportation, there are also big shortcomings. In this paper, the author carries on the analysis of the existing questions encountering in our country's oil and gas storage and transportation~ and proposes the direction of the researches in the future oil and gas storage and transportation, and the purpose is to better improve the security of Cbina's oil and gas storage and transportation and to enhance the efficiency of the use of the oil and gas. 展开更多
关键词 oil and gas storage and transportation natural gas development direction
下载PDF
The development status and the prospect of the pipeline robots in the oil and gas storage and transportation industry
9
作者 Xu Xin Cao Ying 《International English Education Research》 2015年第1期26-27,共2页
In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pi... In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies. 展开更多
关键词 oil and gas storage and transportation pipeline robot development status
下载PDF
Current State and Prospects of CNPC's Oil and Gas Storage and Transportation
10
作者 Jiang Yong 《China Oil & Gas》 CAS 2016年第4期28-34,共7页
Oil and gas transportation facilities are important for a country to secure an energy supply and maintain social stability and economic development.Social capitals in China are now encouraged by the government to inve... Oil and gas transportation facilities are important for a country to secure an energy supply and maintain social stability and economic development.Social capitals in China are now encouraged by the government to invest in the construction of oil and gas infrastructures in the country.With China's growing economy and new reforms in the oil and gas sector,more opportunities are available for private companies seeking to get involved in energy infrastructure.It is estimated that the future market of energy infrastructure projects in China is valued at nearly RMB 2 trillion.This paper is trying to offer some clues regarding investment in energy infrastructure in China by giving a brief introduction to the current situation of CNPC's oil and gas infrastructure construction. 展开更多
关键词 oil and gas transportation facility
下载PDF
Main Indexes of Pipeline Transportation of Crude Oil and Gas
11
《China Oil & Gas》 CAS 1996年第2期127-127,共1页
MainIndexesofPipelineTransportationofCrudeOilandGas¥//Note:Thetotallengthofcrudeandgaspipelinereached17587km... MainIndexesofPipelineTransportationofCrudeOilandGas¥//Note:Thetotallengthofcrudeandgaspipelinereached17587km,including9272kmo... 展开更多
关键词 Main Indexes of Pipeline transportation of Crude oil and gas
下载PDF
Reform Exploration for Safety Course System of Oil and Gas Storage and Transportation Facilities
12
作者 Yanfei Chen Heng Ni +1 位作者 Shang Ma Hong Zhang 《Review of Educational Theory》 2021年第3期16-21,共6页
In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities... In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities safety courses in China University of Petroleum(Beijing)includes“Engineering mechanics”,“Strength design of pipelines and tanks”and“Safety and integrity management of oil and gas storage and transportation facilities”.The three courses lack relevance and the teaching mode is too rigid,resulting in students losing their initiative in learning.If students can’t use the knowledge flexibly,it will affect the achievement of the objectives of the training program.Therefore,oil and gas storage and transportation facilities safety courses are reformed,training plans are adjusted and teaching methods are improved.The practice shows that the reform enriches the teaching content,improves the teaching quality,stimulates classroom activity and gets a good evaluation of students.The reform of safety courses has a certain significance for cultivating compound talents who have the ability to solve practical problems in engineering. 展开更多
关键词 oil and gas storage and transportation Safety of facilities Teaching reform
下载PDF
Hydrocarbon accumulation and orderly distribution of whole petroleum system in marine carbonate rocks of Sichuan Basin,SW China 被引量:1
13
作者 GUO Xusheng HUANG Renchun +3 位作者 ZHANG Dianwei LI Shuangjian SHEN Baojian LIU Tianjia 《Petroleum Exploration and Development》 SCIE 2024年第4期852-869,共18页
Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbo... Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin. 展开更多
关键词 Sichuan Basin margin oil/gas whole petroleum system carbonate hydrocarbon accumulation hydrocarbon distribution law hydrocarbon exploration target
下载PDF
Theoretical Progress and Key Technologies of Onshore Ultra-Deep Oil/Gas Exploration 被引量:28
14
作者 Xusheng Guo Dongfeng Hu +5 位作者 Yuping Li Jinbao Duan Xuefeng Zhang Xiaojun Fan Hua Duan Wencheng Li 《Engineering》 SCIE EI 2019年第3期458-470,共13页
Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, Chin... Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, China has made remarkable achievements in oil/gas exploration in ultra-deep areas including carbonate and clastic reservoirs. Some (ultra) large-scale oil and gas fields have been discovered. The oil/gas accumulation mechanisms and key technologies of oil/gas reservoir exploration and development are summarized in this study in order to share China’s experiences. Ultra-deep oil/gas originates from numerous sources of hydrocarbons and multiphase charging. Liquid hydrocarbons can form in ultradeep layers due to low geothermal gradients or overpressures, and the natural gas composition in ultra-deep areas is complicated by the reactions between deep hydrocarbons, water, and rock or by the addition of mantle- or crust-sourced gases. These oils/gases are mainly stored in the original highenergy reef/shoal complexes or in sand body sediments. They usually have high original porosity. Secondary pores are often developed by dissolution, dolomitization, and fracturing in the late stage. The early pores have been preserved by retentive diageneses such as the early charging of hydrocarbons. Oil/gas accumulation in ultra-deep areas generally has the characteristics of near-source accumulation and sustained preservation. The effective exploration and development of ultra-deep oil/gas reservoirs depend on the support of key technologies. Use of the latest technologies such as seismic signal acquisition and processing, low porosity and permeability zone prediction, and gas–water identification has enabled the discovery of ultra-deep oil/gas resources. In addition, advanced technologies for drilling, completion, and oil/gas testing have ensured the effective development of these fields. 展开更多
关键词 oil/gas EXPLORATION Ultra-deep sources Reservoir Petroleum accumulation EXPLORATION and EXPLOITATION technologies
下载PDF
Control Factors and Diversities of Phase State of Oil and Gas Pools in the Kuqa Petroleum System 被引量:17
15
作者 CHEN Ling ZHU Guangyou +2 位作者 ZHANG Bin WEN Zhigang WANG Yonggang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第2期484-496,共13页
Based on the analysis of the hydrocarbon geochemical characteristics in the Kuqa petroleum system of the Tarim Basin, this study discusses the causes and controlling factors of the phase diversities and their differen... Based on the analysis of the hydrocarbon geochemical characteristics in the Kuqa petroleum system of the Tarim Basin, this study discusses the causes and controlling factors of the phase diversities and their differences in geochemical features. According to the characteristics and differences in oil and gas phase, the petroleum system can be divided into five categories: oil reservoir, wet gas reservoir, condensate gas-rich reservoir, condensate gas-poor reservoir and dry gas reservoir. The causes for the diversities in oil and gas phases include diversities of the sources of parent material, maturity of natural gas and the process of hydrocarbon accumulation of different hydrocarbon phases. On the whole, the Jurassic and Triassic terrestrial source rocks are the main sources for the hydrocarbon in the Kuqa Depression. The small differences in parent material may cause diversities in oil and gas amount, but the impact is small. The differences in oil and gas phase are mainly affected by maturity and the accumulation process, which closely relates with each other. Oil and gas at different thermal evolution stage can be captured in different accumulation process. 展开更多
关键词 Kuqa petroleum system geochemical characteristics of oil and gas diversities of phase state of oil and gas the process of hydrocarbon accumulation
下载PDF
Enrichment Mechanism and Prospects of Deep Oil and Gas 被引量:6
16
作者 HAO Fang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第3期742-756,共15页
With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep lay... With the deepening of oil and gas exploration,the importance of depth is increasingly highlighted.The risk of preservation of storage space in deep reservoirs is greater than that in shallow and medium layers.Deep layers mean older strata,more complex structural evolution and more complex hydrocarbon accumulation processes,and even adjustment and transformation of oil and gas reservoirs.This paper systematically investigates the current status and research progress of deep oil and gas exploration around the world and looks forward to the future research focus of deep oil and gas.In the deep,especially the ultra-deep layers,carbonate reservoirs play a more important role than clastic rocks.Karst,fault-karst and dolomite reservoirs are the main types of deep and ultra-deep reservoirs.The common feature of most deep large and medium-sized oil and gas reservoirs is that they formed in the early with shallow depth.Fault activity and evolution of trap highs are the main ways to cause physical adjustment of oil and gas reservoirs.Crude oil cracking and thermochemical sulfate reduction(TSR)are the main chemical modification effects in the reservoir.Large-scale high-quality dolomite reservoirs is the main direction of deep oil and gas exploration.Accurate identification of oil and gas charging,adjustment and reformation processes is the key to understanding deep oil and gas distribution.High-precision detection technology and high-precision dating technology are an important guarantee for deep oil and gas research. 展开更多
关键词 deep oil and gas carbonate reservoir main accumulation period reservoir adjustment and reconstruction enrichment mechanism
下载PDF
Migration and accumulation characteristics of natural gas hydrates in the uplifts and their slope zones in the Qiongdongnan Basin,China 被引量:4
17
作者 Yu-lin He Jin-qiang Liang +5 位作者 Zeng-gui Kuang Wei Deng Jin-feng Ren Hong-fei Lai Miao-miao Meng Wei Zhang 《China Geology》 2022年第2期234-250,共17页
Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteri... Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration. 展开更多
关键词 gas chimney OVERPRESSURE Migration characteristics of gas hydrates accumulation characteristics of gas hydrates oil and gas exploration engineering NGHs exploration trial engineering Uplifts and slope zones Qiongdongnan Basin China
下载PDF
Exploring the potential of oil and gas resources in Sichuan Basin with Super Basin Thinking 被引量:2
18
作者 WANG Zecheng SHI Yizuo +8 位作者 WEN Long JIANG Hua JIANG Qingchun HUANG Shipeng XIE Wuren LI Rong JIN Hui ZHANG Zhijie YAN Zengmin 《Petroleum Exploration and Development》 CSCD 2022年第5期977-990,共14页
Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the... Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the Sichuan Basin with the aim of unlocking its full resource potential.We conclude that,(1)The three-stage evolution of the Sichuan Basin has resulted in the stereoscopic distribution of hydrocarbon systems dominated by natural gas.The prospecting Nanhua-rift stage gas system is potentially to be found in the ultra-deep part of the basin.The marine-cratonic stage gas system is distributed in the Sinian to Mid-Triassic formations,mainly conventional gas and shale gas resources.The foreland-basin stage tight sand gas and shale oil resources are found in the Upper Triassic-Jurassic formations.Such resource base provides the foundation for the implementation of Super Basin paradigm in the Sichuan Basin.(2)To ensure larger scale hydrocarbon exploration and production,technologies regarding deep to ultra-deep carbonate reservoirs,tight-sand gas,and shale oil are necessarily to be advanced.(3)In order to achieve the full hydrocarbon potential of the Sichuan Basin,pertinent exploration strategies are expected to be proposed with regard to each hydrocarbon system respectively,government and policy supports ought to be strengthened,and new cooperative pattern should be established.Introducing the“Super Basin Thinking”provides references and guidelines for further deployment of hydrocarbon exploration and production in the Sichuan Basin and other developed basins. 展开更多
关键词 Super Basin Thinking marine carbonate reservoir tight sand gas shale oil total petroleum system stacked hydrocarbon accumulation Sichuan Basin
下载PDF
Re-recognition of “unconventional” in unconventional oil and gas 被引量:3
19
作者 JIAO Fangzheng 《Petroleum Exploration and Development》 2019年第5期847-855,共9页
Taking the Wufeng–Longmaxi shale gas in the Sichuan Basin as a typical example,based on the new progress in exploration and development,this study re-examines the"unconventional"of unconventional oil and ga... Taking the Wufeng–Longmaxi shale gas in the Sichuan Basin as a typical example,based on the new progress in exploration and development,this study re-examines the"unconventional"of unconventional oil and gas from two aspects:oil and gas formation and accumulation mechanisms,and main features of oil and gas layers.The oil and gas of continuous accumulation and distribution from integrated source and reservoir is unconventional oil and gas,and the study focusing on shale oil and gas in comparison with conventional oil and gas has made progress in five aspects:(1)Unconventional oil and gas have source-reservoir-in-one and in-situ accumulation;according to the theory of continuous oil and gas accumulation,the accumulation power of oil and gas is overpressure and diffusion;for conventional oil and gas,the source and reservoir are different formations,the trapping accumulation is its theoretical foundation,and the accumulation power is characterized by buoyancy and capillary force.(2)The unconventional oil and gas reservoirs are mainly formed in the low-energy oxygen-anaerobic environment,dominantly semi-deep to deep shelf facies and the semi-deep to deep lake facies,simple in lithology,rich in organic matter and clay minerals;conventional oil and gas mainly occur in coarse-grained sedimentary rocks formed in high-energy waters with complex lithology.(3)The unconventional oil and gas reservoirs have mainly nano-scale pores,of which organic matter pores take a considerable proportion;conventional oil and gas reservoirs mainly have micron-millimeter pores and no organic matter pores.(4)Unconventional shale oil and gas reservoirs have oil and gas in uniform distribution,high oil and gas saturation,low or no water content,and no obvious oil and gas water boundary;conventional oil and gas reservoirs have oil and gas of complex properties,moderate oil and gas saturation,slightly higher water content,and obvious oil,gas and water boundaries.(5)Organic-rich shale is the main target of unconventional oil and gas exploration;the sedimentary environment controls high organic matter abundance zone and organic matter content controls oil and gas abundance;positive structure and high porosity control the yields of shale wells;bedding and fracture development are important factors deciding high yield. 展开更多
关键词 UNCONVENTIONAL oil and gas theoretical CONNOTATION SHALE oil and gas hydrocarbon accumulation dynamics organic matter fine grain deposition Wufeng–Longmaxi Formations SICHUAN Basin
下载PDF
Microbial Gas in the Mohe Permafrost, Northeast China and its Significance to Gas Hydrate Accumulation in Permafrost across China
20
作者 ZHAO Xingmin SUN Youhong +4 位作者 DENG Jian RAO Zhu Lü Cheng SONG Jian Li Lixia 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2251-2266,共16页
The Mohe permafrost in northeast China possesses favorable subsurface ambient temperature, salinity, Eh values and pH levels of groundwater for the formation of microbial gas, and the Mohe Basin contains rich organic ... The Mohe permafrost in northeast China possesses favorable subsurface ambient temperature, salinity, Eh values and pH levels of groundwater for the formation of microbial gas, and the Mohe Basin contains rich organic matter in the Middle Jurassic dark mudstones. This work conducted gas chromatography and isotope mass spectrometry analyses of nearly 90 core gas samples from the Mk-2 well in the Mohe Basin. The results show that the dryness coefficient(C1/C1–5) of core hydrocarbon gas from approximately 900 m intervals below the surface is larger than 98%, over 70% of the δ13 C values of methane are smaller than-55‰, and almost all δD values of methane are smaller than-250‰, indicative of a microbial origin of the gas from almost 900 m of the upper intervals in the Mohe permafrost. Moreover, the biomarker analyses of 72 mudstone samples from the Mohe area indicate that all of them contain 25-norhopane series compounds, thereby suggesting widely distributed microbial activities in the permafrost. This work has confirmed the prevailing existence of microbial gas in the Mohe area, which may be a potential gas source of gas hydrate formation in the Mohe permafrost. This result is of great significance to gas hydrate accumulation in the permafrost across China. 展开更多
关键词 microbial gas gas hydrate accumulation PERMAFROST oil and gas MOHE northeast China
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部