Complicated oil and gas fields occupy an important position in oil and gas exploration. In this paper, complicated oil and gas fields are grouped into four types: fault-block, lithologic, stratigraphic and fissure typ...Complicated oil and gas fields occupy an important position in oil and gas exploration. In this paper, complicated oil and gas fields are grouped into four types: fault-block, lithologic, stratigraphic and fissure types. On the basis of the new theory of petroleum geological exploration in composite oil and gas accumulation areas within continental basins, a new exploration sequence suitable for complicated oil and gas fields has been established, which comprises four stages:(1) initial exploration;(2) preliminary exploration;(3) early step-by-step exploration and development: and(4) late step-by-step exploration and development. The idea of cybernetics has been taken to control various links of a systematic exploration project so as to fully, effectively and comprehensively utilize the new exploration techniques, eventually realizing the optimization of exploration with the aim of raising the efficiency of exploration of complicated oil and gas fields.展开更多
Based on about 20 years of accumulated experience and knowledge of oil and gas field development in overseas countries and regions for China's oil companies, the development features, ideas, models and plan design...Based on about 20 years of accumulated experience and knowledge of oil and gas field development in overseas countries and regions for China's oil companies, the development features, ideas, models and plan designing strategies of overseas oil and gas fields were comprehensively summarized. Overseas oil and gas field development has ten major features, such as non-identity project resource, diversity of contract type, complexity of cooperation model, and so on. The overseas oil and gas field development aims at the maximization of production and benefit during the limited contract period, so the overseas oil and gas field development models are established as giving priority to production by natural energy, building large-scale production capacity, putting into production as soon as possible, realizing high oil production recovery rate, and achieving rapid payback period of investment. According to the overseas contract mode, a set of strategies for overseas oil and gas field development plans were made. For tax systems contracts, the strategy is to adopt the mode of "first fat and then thinner, easier in the first and then harder", that is, early investment pace, production increase rate, development workload and production were decided by the change of tax stipulated in the contract. For production share contracts, the strategy is to give priority to high production with a few wells at a high production recovery rate to increase the cost-oil and shorten the period of payback. For technical service contracts, the strategy is that the optimal production target and workload of the project were determined by the return on investment, so as to ensure that the peak production and stable production periods meet the contract requirements.展开更多
This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technol...This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.展开更多
To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in ...To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in survey,containing complex type and numerous amount of ecologically sensitive space and ecological red line involved in oil and gas field enterprises,scientific nature of delimitation,lack of strong support of laws and regulations for forced withdrawal of oil and gas production facilities in these areas,some countermeasures and suggestions were proposed,such as further evaluating and combing scope and functional zoning of existing environmentally sensitive areas and ecological red lines,treating differently,enhancing pertinence of prohibition in ecologically sensitive regions,declining blindness of the withdrawal of oil and gas facilities in environmentally sensitive areas,strengthening seriousness of approval of exploration and mining rights of oil and gas resources,and establishing strategic reserve exploration and hierarchical development mechanism. Moreover,oil and gas field enterprises should integrate more efforts to ① accelerate to find out the current situation of environmental quality,② adhere to developing in protection,and protecting in development,③ increase attention and participation strengthen of providing technical support for national oil and gas exploration and development strategy evaluation,④ accelerate communication and docking with local governments on the ecological red line,⑤ actively strive to be included in the positive list management of local governments,⑥ accelerate to establish and perfect primary database of oil and gas production and facilities construction,and ⑦ document management information system of the ecological red line.展开更多
Based on the results of researches and applications for many years, it has been discovered that new methods and techniques for geochemical exploration of oil and gas such as δC, altered carbonate, Hg in absorption ph...Based on the results of researches and applications for many years, it has been discovered that new methods and techniques for geochemical exploration of oil and gas such as δC, altered carbonate, Hg in absorption phase, Ks, Fe2+, δ13C, fluorescence in two and three dimensions, and N2 and O2 in heat release can give full play in the following five fields: (1) optimization of the favourable target or hollow zones and structural zones in a region; (2) evaluation of oil traps and delineation of prospective oil and gas areas; (3) prediction of deep-seated oil-bearing horizons; (4) evaluation of the genesis of oil and gas geochemical anomalies and determination of the types of oil and gas accumulations; (5) forecast of the burial depths of oil and gas pools.展开更多
As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including dete...As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including determination of the favorable distribution areas and favorable strata thickness,identification of the dual source for accumulation,evaluation of the prospective gas contents,verification of the widespread existence,and confirmation of the technical recoverability of NGH resources.However,there are three major challenges in the NGH studies.First,all the 24 national key and major projects in the SCS focused on trial production engineering and geological engineering in the past 20 years,while 8 of the 10 international NGH research projects focused on resource potential.Second,resource evaluation methods are outdated and some parameter selection are subjective.Third,the existing resource evaluation results are low-level with a great uncertainty,and cannot be used to guide NGH exploration and production or strategic research.To improve the evaluation of NGH resources in the SCS,future researches should focus on four aspects:(1)improve the research on the criterion of the objective existence of NGH and the method of prediction and evaluation;(2)apply new theories and methods from the global NGH research;(3)boost the research on the difference and correlation of the conditions of hydrocarbon migration and accumulation in different basins;(4)innovate the theory and method of NGH resource potential evaluation.展开更多
The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify th...The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas,the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper.Meanwhile,the tectonic stress magnitude in these areas since the Mesozoic was restored.The laws state that the tectonic stress varied with depth was revealed,followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes.These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present,as well as previous research achievements.The results of this paper demonstrate that the third episode of Yanshanian Movement(Yanshanian III)had the maximum activity intensity and tremendously influenced the structural pattern in the study area.The maximum horizontal principal stress of Yanshanian III varied with depth as follows:0.0168 x+37.001(MPa),R^2=0.8891.The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation,west Sichuan Basin,of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa.In addition,the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221(MPa),R^2=0.7868 in Wuling Mountain area.Meanwhile,it was determined to be 0.0221 x+9.4733(MPa),R^2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247(MPa),R^2=0.8064 in the whole study area.These research results will not only provide data for the simulation of stress field,the evaluation of deformation degree,and the prediction of structural fractures,but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.展开更多
The history of China's offshore oil industry can be traced back to late 1950's when geophysical surveys started in limited offshore areas.Then,in 1960's and 1970's,a few exploratory wells scattered fro...The history of China's offshore oil industry can be traced back to late 1950's when geophysical surveys started in limited offshore areas.Then,in 1960's and 1970's,a few exploratory wells scattered from north down to south were drilled resulting in a number of discoveries with the total proven oil in place being merely 40 million tons.In fact,the China's offshore oil industry in a real sence did not emerge on the horizon until early 1980's when China opened its door to outside world and the China National Offshore Oil Corporation(CNOOC)was born.展开更多
Borehole nuclear magnetic resonance(NMR)is a powerful technology to characterize the petrophysical properties of underground reservoirs in the petroleum industry.The rising complexity of oil and gas exploration and de...Borehole nuclear magnetic resonance(NMR)is a powerful technology to characterize the petrophysical properties of underground reservoirs in the petroleum industry.The rising complexity of oil and gas exploration and development objectives,as well as the novel application contexts of underground reservoirs,have led to increasingly demanding requirements on borehole NMR technology including instrument design and related processing methods.This mini review summarizes the advances and applications of borehole NMR instruments along with some future possibilities.It may be helpful for researchers and engineers in the petroleum industry to understand the development status and future trends of borehole NMR technology.展开更多
The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a numb...The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a number of large and medium scale gas reservoirs including Keshen 2,Keshen 5 and Keshen 8 have been discovered,that are characterized by ultra depth,ultra-high pressure,ultra-low porosity,ultra-low permeability,high temperature and high pressure.With natural gas geological reserves of nearly trillion cubic meters and production capacity of nearly 5.5 billion cubic meters,the Keshen gas field is the main natural gas producing area in Tarim Oilfield.The Keshen gas field is located in a series of thrusting imbrication structures in the Kelasu structural belt of Kuqa foreland thrust belt.The salt roof structure,plastic rheology of salt beds and pre-salt faulted anticlinal structure constitute the large wedge-shaped thrust body.The thick delta sandstone of the Cretaceous Bashijike Formation is widely distributed,and it forms the superior reservoir-caprock combination with overlying Paleogene thick gypsum-salt bed.The deep Jurassic-Triassic oil and gas migrate vertically along fault system formed in Late Himalaya,break through the thick Cretaceous mudstone and move laterally along the fracture system of the pre-salt reservoirs,to form anticline and fault anticline high pressure reservoir groups.Through near ten years of studies,the three-dimensional seismic acquisition and processing technology for complex mountainous areas,extrusion salt-related structural modeling technology and fractured low-porosity sandstone reservoir evaluation technology have been established,which lay a foundation for realization of oil and gas exploration objectives.Logging acquisition and evaluation technology for high temperature,high pressure,ultra-deep and low-porosity sandstone gas reservoirs,and efficient development technology for fractured tight sandstone gas reservoirs have been developed,which provide a technical support for efficient exploration&development and rapid production of the Keshen gas field.展开更多
The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have...The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have provided abundant data for analyzing formation conditions of this super-large oilfield.On the basis of the exploration and development history,fundamental reservoir features,and with available geological,geophysical and test data,the hydrocarbon accumulation conditions and key exploration&development technologies of the PL 19e3 Oilfield were discussed.The key conditions for forming the super-large Neogene oilfield include four aspects.Firstly,the oilfield is located at the high position of the uplift that contacts the brachy-axis of the multi-ridge slope in the biggest hydrocarbon-rich sag in the Bohai Bay Basin,thus it has sufficient hydrocarbon source and extremely superior hydrocarbon migration condition.Secondly,the large-scale torsional anticlines which formed in the Neogene under the control of the Tanlu strike-slipping movement provide sufficient storage spaces for oil and gas preservation.Thirdly,the“multiple sets of composite reservoir-caprock assemblages”developing in the special shallow-water delta further contributes greatly to the effective storage space for oil and gas preservation.Fourthly,due to the coupling of the uplift and strike slip in the neotectonic period,extensive faulting activities constantly released the pressure while the late period massive hydrocarbon expulsion of the Bozhong took place at the same time,which assures the constant and intense charging of oil and gas.The super-large PL 19e3 Oilfield was controlled by the coupling effects of all those special geologic factors.In view of this oilfield's features(e.g.violently reformation caused by strike slip,and the special sedimentary environment of shallow-water delta),some key practical technologies for exploration and development have been developed.Such technologies include:the special prestack depth migration processing for gas cloud zones,the prediction of thin interbed reservoirs based on high-precision inversion of geologic model,the reservoir description for the shallow-water braided river delta,the quantitative description for remaining oil in the commingled oil reservoirs with wide well spacing and long well interval,and the well pattern adjustment for formations during high water cut period in the complex fluvial-facies oilfields.展开更多
Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migr...Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migration and aggregation. Based on geological mapping, structural data, and mechanical parameters of rocks, we reconstruct the traces for gas/oil migration and aggregation in Dabashan intra-continental orogen using numerical simulation. The study shows that gas/oil, obviously dominated by late Middle Jurassic-Early Cretaceous paleo-tectonic stress field that is characterized by NE-SW shortening in the Dabashan thrust belt and SW-emanating shortening in its foreland belt, massively migrate from the Dabashan thrust belt to its foreland belt, that is, NE to SW, resulting in the formation of some probable favorable areas for oil/gas mainly along the Tiexi -Wuxi fault, in some superposed structure (e.g., Zhenba , Wanyuan , Huangjinkou , and Tongnanba areas), and in the Zigui Basin. Thus, our study shows that numerical simulation can be effectively applied to study oil/gas migration and aggregation in intra-continental orogen and provided some significant evidences for oil/gas exploration.展开更多
文摘Complicated oil and gas fields occupy an important position in oil and gas exploration. In this paper, complicated oil and gas fields are grouped into four types: fault-block, lithologic, stratigraphic and fissure types. On the basis of the new theory of petroleum geological exploration in composite oil and gas accumulation areas within continental basins, a new exploration sequence suitable for complicated oil and gas fields has been established, which comprises four stages:(1) initial exploration;(2) preliminary exploration;(3) early step-by-step exploration and development: and(4) late step-by-step exploration and development. The idea of cybernetics has been taken to control various links of a systematic exploration project so as to fully, effectively and comprehensively utilize the new exploration techniques, eventually realizing the optimization of exploration with the aim of raising the efficiency of exploration of complicated oil and gas fields.
基金Supported by the China National Science and Technology Major Project(2017ZX05030)
文摘Based on about 20 years of accumulated experience and knowledge of oil and gas field development in overseas countries and regions for China's oil companies, the development features, ideas, models and plan designing strategies of overseas oil and gas fields were comprehensively summarized. Overseas oil and gas field development has ten major features, such as non-identity project resource, diversity of contract type, complexity of cooperation model, and so on. The overseas oil and gas field development aims at the maximization of production and benefit during the limited contract period, so the overseas oil and gas field development models are established as giving priority to production by natural energy, building large-scale production capacity, putting into production as soon as possible, realizing high oil production recovery rate, and achieving rapid payback period of investment. According to the overseas contract mode, a set of strategies for overseas oil and gas field development plans were made. For tax systems contracts, the strategy is to adopt the mode of "first fat and then thinner, easier in the first and then harder", that is, early investment pace, production increase rate, development workload and production were decided by the change of tax stipulated in the contract. For production share contracts, the strategy is to give priority to high production with a few wells at a high production recovery rate to increase the cost-oil and shorten the period of payback. For technical service contracts, the strategy is that the optimal production target and workload of the project were determined by the return on investment, so as to ensure that the peak production and stable production periods meet the contract requirements.
文摘This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.
文摘To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in survey,containing complex type and numerous amount of ecologically sensitive space and ecological red line involved in oil and gas field enterprises,scientific nature of delimitation,lack of strong support of laws and regulations for forced withdrawal of oil and gas production facilities in these areas,some countermeasures and suggestions were proposed,such as further evaluating and combing scope and functional zoning of existing environmentally sensitive areas and ecological red lines,treating differently,enhancing pertinence of prohibition in ecologically sensitive regions,declining blindness of the withdrawal of oil and gas facilities in environmentally sensitive areas,strengthening seriousness of approval of exploration and mining rights of oil and gas resources,and establishing strategic reserve exploration and hierarchical development mechanism. Moreover,oil and gas field enterprises should integrate more efforts to ① accelerate to find out the current situation of environmental quality,② adhere to developing in protection,and protecting in development,③ increase attention and participation strengthen of providing technical support for national oil and gas exploration and development strategy evaluation,④ accelerate communication and docking with local governments on the ecological red line,⑤ actively strive to be included in the positive list management of local governments,⑥ accelerate to establish and perfect primary database of oil and gas production and facilities construction,and ⑦ document management information system of the ecological red line.
文摘Based on the results of researches and applications for many years, it has been discovered that new methods and techniques for geochemical exploration of oil and gas such as δC, altered carbonate, Hg in absorption phase, Ks, Fe2+, δ13C, fluorescence in two and three dimensions, and N2 and O2 in heat release can give full play in the following five fields: (1) optimization of the favourable target or hollow zones and structural zones in a region; (2) evaluation of oil traps and delineation of prospective oil and gas areas; (3) prediction of deep-seated oil-bearing horizons; (4) evaluation of the genesis of oil and gas geochemical anomalies and determination of the types of oil and gas accumulations; (5) forecast of the burial depths of oil and gas pools.
基金financially supported by the CAS consultation project“South China Sea Oil and Gas Comprehensive Development Strategy”(2019-ZW11-Z-035)the National Basic Research Program of China(2006CB202300,2011CB201100)the National HighTech R&D(863)Program of China(2013AA092600)。
文摘As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including determination of the favorable distribution areas and favorable strata thickness,identification of the dual source for accumulation,evaluation of the prospective gas contents,verification of the widespread existence,and confirmation of the technical recoverability of NGH resources.However,there are three major challenges in the NGH studies.First,all the 24 national key and major projects in the SCS focused on trial production engineering and geological engineering in the past 20 years,while 8 of the 10 international NGH research projects focused on resource potential.Second,resource evaluation methods are outdated and some parameter selection are subjective.Third,the existing resource evaluation results are low-level with a great uncertainty,and cannot be used to guide NGH exploration and production or strategic research.To improve the evaluation of NGH resources in the SCS,future researches should focus on four aspects:(1)improve the research on the criterion of the objective existence of NGH and the method of prediction and evaluation;(2)apply new theories and methods from the global NGH research;(3)boost the research on the difference and correlation of the conditions of hydrocarbon migration and accumulation in different basins;(4)innovate the theory and method of NGH resource potential evaluation.
基金The study associated with this paper was supported by projects of China Geological Survey(DD20190085,DD20160183,1212011120976).
文摘The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas,the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper.Meanwhile,the tectonic stress magnitude in these areas since the Mesozoic was restored.The laws state that the tectonic stress varied with depth was revealed,followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes.These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present,as well as previous research achievements.The results of this paper demonstrate that the third episode of Yanshanian Movement(Yanshanian III)had the maximum activity intensity and tremendously influenced the structural pattern in the study area.The maximum horizontal principal stress of Yanshanian III varied with depth as follows:0.0168 x+37.001(MPa),R^2=0.8891.The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation,west Sichuan Basin,of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa.In addition,the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221(MPa),R^2=0.7868 in Wuling Mountain area.Meanwhile,it was determined to be 0.0221 x+9.4733(MPa),R^2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247(MPa),R^2=0.8064 in the whole study area.These research results will not only provide data for the simulation of stress field,the evaluation of deformation degree,and the prediction of structural fractures,but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.
文摘The history of China's offshore oil industry can be traced back to late 1950's when geophysical surveys started in limited offshore areas.Then,in 1960's and 1970's,a few exploratory wells scattered from north down to south were drilled resulting in a number of discoveries with the total proven oil in place being merely 40 million tons.In fact,the China's offshore oil industry in a real sence did not emerge on the horizon until early 1980's when China opened its door to outside world and the China National Offshore Oil Corporation(CNOOC)was born.
基金“The Strategic Cooperation Technology Projects of CNPC and CUP(Grant Number ZLZX2020-03)”“China Postdoctoral Science Foundation(Grant Number 2021M700172)”.
文摘Borehole nuclear magnetic resonance(NMR)is a powerful technology to characterize the petrophysical properties of underground reservoirs in the petroleum industry.The rising complexity of oil and gas exploration and development objectives,as well as the novel application contexts of underground reservoirs,have led to increasingly demanding requirements on borehole NMR technology including instrument design and related processing methods.This mini review summarizes the advances and applications of borehole NMR instruments along with some future possibilities.It may be helpful for researchers and engineers in the petroleum industry to understand the development status and future trends of borehole NMR technology.
基金The work was supported by the National Science and Technology Major Project of China(No.2016ZX05003-004).
文摘The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a number of large and medium scale gas reservoirs including Keshen 2,Keshen 5 and Keshen 8 have been discovered,that are characterized by ultra depth,ultra-high pressure,ultra-low porosity,ultra-low permeability,high temperature and high pressure.With natural gas geological reserves of nearly trillion cubic meters and production capacity of nearly 5.5 billion cubic meters,the Keshen gas field is the main natural gas producing area in Tarim Oilfield.The Keshen gas field is located in a series of thrusting imbrication structures in the Kelasu structural belt of Kuqa foreland thrust belt.The salt roof structure,plastic rheology of salt beds and pre-salt faulted anticlinal structure constitute the large wedge-shaped thrust body.The thick delta sandstone of the Cretaceous Bashijike Formation is widely distributed,and it forms the superior reservoir-caprock combination with overlying Paleogene thick gypsum-salt bed.The deep Jurassic-Triassic oil and gas migrate vertically along fault system formed in Late Himalaya,break through the thick Cretaceous mudstone and move laterally along the fracture system of the pre-salt reservoirs,to form anticline and fault anticline high pressure reservoir groups.Through near ten years of studies,the three-dimensional seismic acquisition and processing technology for complex mountainous areas,extrusion salt-related structural modeling technology and fractured low-porosity sandstone reservoir evaluation technology have been established,which lay a foundation for realization of oil and gas exploration objectives.Logging acquisition and evaluation technology for high temperature,high pressure,ultra-deep and low-porosity sandstone gas reservoirs,and efficient development technology for fractured tight sandstone gas reservoirs have been developed,which provide a technical support for efficient exploration&development and rapid production of the Keshen gas field.
基金The work was supported by the National Science and Technology Major Project of China(No.2016ZX05024-003).
文摘The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have provided abundant data for analyzing formation conditions of this super-large oilfield.On the basis of the exploration and development history,fundamental reservoir features,and with available geological,geophysical and test data,the hydrocarbon accumulation conditions and key exploration&development technologies of the PL 19e3 Oilfield were discussed.The key conditions for forming the super-large Neogene oilfield include four aspects.Firstly,the oilfield is located at the high position of the uplift that contacts the brachy-axis of the multi-ridge slope in the biggest hydrocarbon-rich sag in the Bohai Bay Basin,thus it has sufficient hydrocarbon source and extremely superior hydrocarbon migration condition.Secondly,the large-scale torsional anticlines which formed in the Neogene under the control of the Tanlu strike-slipping movement provide sufficient storage spaces for oil and gas preservation.Thirdly,the“multiple sets of composite reservoir-caprock assemblages”developing in the special shallow-water delta further contributes greatly to the effective storage space for oil and gas preservation.Fourthly,due to the coupling of the uplift and strike slip in the neotectonic period,extensive faulting activities constantly released the pressure while the late period massive hydrocarbon expulsion of the Bozhong took place at the same time,which assures the constant and intense charging of oil and gas.The super-large PL 19e3 Oilfield was controlled by the coupling effects of all those special geologic factors.In view of this oilfield's features(e.g.violently reformation caused by strike slip,and the special sedimentary environment of shallow-water delta),some key practical technologies for exploration and development have been developed.Such technologies include:the special prestack depth migration processing for gas cloud zones,the prediction of thin interbed reservoirs based on high-precision inversion of geologic model,the reservoir description for the shallow-water braided river delta,the quantitative description for remaining oil in the commingled oil reservoirs with wide well spacing and long well interval,and the well pattern adjustment for formations during high water cut period in the complex fluvial-facies oilfields.
基金supported by the National Natural ScienceFoundation of China (No. 41172184)SINOPROBE-08-01SINOPEC
文摘Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migration and aggregation. Based on geological mapping, structural data, and mechanical parameters of rocks, we reconstruct the traces for gas/oil migration and aggregation in Dabashan intra-continental orogen using numerical simulation. The study shows that gas/oil, obviously dominated by late Middle Jurassic-Early Cretaceous paleo-tectonic stress field that is characterized by NE-SW shortening in the Dabashan thrust belt and SW-emanating shortening in its foreland belt, massively migrate from the Dabashan thrust belt to its foreland belt, that is, NE to SW, resulting in the formation of some probable favorable areas for oil/gas mainly along the Tiexi -Wuxi fault, in some superposed structure (e.g., Zhenba , Wanyuan , Huangjinkou , and Tongnanba areas), and in the Zigui Basin. Thus, our study shows that numerical simulation can be effectively applied to study oil/gas migration and aggregation in intra-continental orogen and provided some significant evidences for oil/gas exploration.