期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Geologic characteristics,exploration and production progress of shale oil and gas in the United States:An overview
1
作者 MCMAHON T P LARSON T E +1 位作者 ZHANG T SHUSTER M 《Petroleum Exploration and Development》 SCIE 2024年第4期925-948,共24页
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o... We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production. 展开更多
关键词 United States shale oil shale gas shale reservoirs unconventional reservoirs oil and gas production resource assessment
下载PDF
Progress and prospects of oil and gas production engineering technology in China 被引量:2
2
作者 ZHENG Xinquan SHI Junfeng +4 位作者 CAO Gang YANG Nengyu CUI Mingyue JIA Deli LIU He 《Petroleum Exploration and Development》 CSCD 2022年第3期644-659,共16页
This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas p... This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry. 展开更多
关键词 oil and gas production engineering separated-layer injection artificial lift reservoir stimulation gas well de-watering WORKOVER digital transformation low carbon economy
下载PDF
CHINA'S OIL AND GAS PRODUCTION IN 1999
3
作者 Chen Yongwu and Zhang Wenhua (Development and Planning Dept., State Administration of Petroleum and Chemical Industries PR. China) 《China Oil & Gas》 2000年第1期27-28,共2页
关键词 CNPC THAN CHINA’S oil and gas production IN 1999 gas
下载PDF
CNPC's Oil and Gas Production Tasks of 1999
4
《China Oil & Gas》 CAS 1999年第2期105-106,共2页
关键词 CNPC’s oil and gas production Tasks of 1999
下载PDF
Hydrate Prevention Strategies and the Associated Cost in the Gulf of Mexico
5
作者 Ibrahim Ninalowo Bahman Tohidi 《World Journal of Engineering and Technology》 2024年第2期286-309,共24页
With the petroleum industry endeavoring to develop promising oil and gas in deeper water, gas hydrates prevention is a serious concern for oil and gas producing companies producing at conditions in the hydrate region.... With the petroleum industry endeavoring to develop promising oil and gas in deeper water, gas hydrates prevention is a serious concern for oil and gas producing companies producing at conditions in the hydrate region. This paper details lessons learned from the successful field deployment of AA LDHI and proper implementation strategies used for 3 different practical fields as case studies in the Gulf of Mexico. From the 3 field experiences, the AA LDHI has been used to replace the conventional thermodynamic hydrate inhibitor due to its numerous benefits during steady state operations and transition operations where AA LDHI is injected prior to extended shut in and restart for fields producing at low water cut. However, the strategy to develop a cost effective chemical management of hydrates for fields producing at high water cut is by pumping methanol or diesel to push down the wellbore fluid below the mud line during planned and unplanned shut-ins to delay water production, it also secures the riser with non hydrate fluids. This illustrates how the AA LDHIs are used in conjunction with more conventional hydrate management approaches to reach an optimal cost effective field hydrate management solution. However, this shows that the key to overall success of hydrate prevention is a full integration of a good front end design, a comprehensive deployment and an effective down hole monitoring system. 展开更多
关键词 Flow Assurance Hydrate production Chemistry Hydrate Inhibitor Hydrate Prevention Strategies Deep Water oil and gas production Hydrate Blockage
下载PDF
Hydrocarbon-Based Contaminants in Drinking Water Sources and Shellfish in the Soku Oil and Gas Fields of South-South Nigeria
6
作者 Ifeanyichukwu Clinton Ezekwe Christian Livingstone Otiasah +1 位作者 Morufu Olalekan Raimi Iyingiala Austin-Asomeji 《Open Journal of Yangtze Oil and Gas》 CAS 2022年第4期213-230,共18页
Environmentally unfriendly Oil exploration activities have been ongoing in the Soku area of the Niger Delta of Nigeria since 1956. This study evaluated the concentration of hydrocarbons and heavy metals in Shellfish a... Environmentally unfriendly Oil exploration activities have been ongoing in the Soku area of the Niger Delta of Nigeria since 1956. This study evaluated the concentration of hydrocarbons and heavy metals in Shellfish and drinking water sources in the study area. It revealed the absence (<0.001 mg/l) of most heavy metals (Ni, Ch, Cd, Pb mg/l) in the water column;a high concentration of the major ion composition of seawater (sulphates 5 - 1018;calcium 0.502 - 53.502;sodium 1.247 - 63.337;potassium 0.508 - 102.745;magnesium 0.354 - 42.574 mg/l);and high PAHs (<0.001 - 0.032 mg/l) levels occurring above WHO limits (0.007 mg/l) with some risk of exposure to cancer. Results from the analysis of shellfish showed that concentrations of chromium and zinc were below permissible limits while cadmium concentrations were slightly above permissible limits of the European Community. Nickel and lead were above permissible limits in the fish samples in all standards while PAHs occurred at the cancer risk levels of 10?6. A review of the public health situation in the Soku area with a view to understanding current trends, sources of perturbations and preferable solutions to the potential public health challenges raised in this study is hereby recommended. Also, this study recommends that relevant agencies and developmental partners should launch a national drive to create awareness among people/environmental/public health professionals’/health workers/administrators on this regional concern. 展开更多
关键词 Niger Delta oil and gas production oil Pollution PERIWINKLE Rural Livelihoods Water Quality
下载PDF
Development of a pressure coring system for the investigation of deep underground exploration
7
作者 Da Guo Ling Chen +8 位作者 Zhongya Zhou Dingming Wang Yiwei Zhang Xun Yang Xin Fang Xiaojun Wang Heping Lu Lin Dai Heping Xie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1351-1364,共14页
To provide a more accurate evaluation of the scale of deep underground resources,a new pressure coring system was carefully developed and its strength and safety of the engineering were verified by theoretical analyse... To provide a more accurate evaluation of the scale of deep underground resources,a new pressure coring system was carefully developed and its strength and safety of the engineering were verified by theoretical analyses and numerical simulation.The designed pressure coring system can obtain cores with length of 3 m and diameter of 50 mm at 70 MPa.The results of the ball-drop operation experiment demonstrate that differential motion assembly can effectively cut a safety pin by applying a tensile force of 4852 N,and it can lift the core tube through the center pole to complete a series of mechanical actions to seal the pressure.Additionally,by maintaining pressures at 70 MPa for 30 min,the pressure sealing capacity of the system was proven.Furthermore,a core sample with a diameter of 50 mm was obtained through a core drilling experiment and the coring performance of the pressure coring system was verified.This study can not only enrich the existing onshore coring technology but also provide a theoretical guide and design criteria for the development of similar pressure coring systems to meet the demand for deeper underground exploration. 展开更多
关键词 Underground exploration In-situ coring Pressure coring oil and gas production
下载PDF
Sichuan super gas basin in southwest China 被引量:3
8
作者 DAI Jinxing NI Yunyan +7 位作者 LIU Quanyou WU Xiaoqi GONG Deyu HONG Feng ZHANG Yanling LIAO Fengrong YAN Zengmin LI Hongwei 《Petroleum Exploration and Development》 CSCD 2021年第6期1251-1259,共9页
A sedimentary basin is classified as a super basin when its cumulative production exceeds 5 billion barrels of oil equivalent(6.82×10^(8) t of oil or 7931.66×10^(8) m^(3) of gas)and its remaining recoverable... A sedimentary basin is classified as a super basin when its cumulative production exceeds 5 billion barrels of oil equivalent(6.82×10^(8) t of oil or 7931.66×10^(8) m^(3) of gas)and its remaining recoverable resources are at least 5 billion barrels of oil equivalent.By the end of 2019,the total output of oil and gas in Sichuan Basin had been 6569×10^(8) m^(3),the ratio of gas to oil was 80:1,and the total remaining recoverable resources reached 136404×10^(8) m^(3),which makes it as a second-tier super basin.Because the output is mainly gas,it is a super gas basin.The reason why the Sichuan Basin is a super gas basin is that it has four advantages:(1)The advantage of gas source rocks:it has the most gas source rocks(9 sets)among all the basins in China.(2)The advantage of resource quantity:it has the most total remaining recoverable resources among all the basins in China(136404×10^(8) m^(3)).(3)The advantage of large gas fields:it has the most large gas fields(27)among all the basins in China.(4)The advantage of total production:by the end of 2019,the total gas production had been 6487.8×10^(8) m^(3),which ranked the first among all the basins in China.There are four major breakthroughs in natural gas exploration in Sichuan Basin:(1)Breakthrough in shale gas:shale gas was firstly found in the Ordovician Wufeng-Silurian Longmaxi formations in China.(2)Breakthrough in tight sandstone gas:the Triassic Xu2 Member gas reservoir in Zhongba gas field is the first high recovery tight sandstone gas reservoir in China.(3)Breakthrough in giant carbonate gas fields.(4)Breakthrough in ultra-deep gas reservoir.These breakthroughs have led to important progress in different basins across the country.Super basins are classified according to three criteria:accumulative oil and gas production,remaining recoverable resources,tectonic attributes of the basin and the proportion of oil and gas in accumulative oil and gas production. 展开更多
关键词 Sichuan Basin super basin oil and gas production RESOURCE source rocks large gas fields shale gas tight sandstone gas ultra-deep gas reservoir
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部