The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional...The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.展开更多
Surfactants are widely used in the petroleum industry as one kind of Enhanced Oil Recovery methods (EOR). The oil sands mines in Northern Alberta are the largest one in the world. Due to using sodium hydroxide in bitu...Surfactants are widely used in the petroleum industry as one kind of Enhanced Oil Recovery methods (EOR). The oil sands mines in Northern Alberta are the largest one in the world. Due to using sodium hydroxide in bitumen extraction process, there are a lot of surfactant molecules in the tailing water. The surfactants from oil sands industry have brought a potential threat to the environment and human health. Depending on the performance of surfactant at the interface, this work focuses on removing these harmful surfactants from the tailing water and not bringing other possible hazardous substances. Moreover, a mathematical model is built to calculate the removal efficiency of the surfactant. The time required for removing the surfactant is determined experimentally. In conclusion, most of surfactant molecules are adsorbed at the oil/water interface. The fraction of the surfactant staying at the oil/water interface is high. Most of the surfactants in tailing water can be eliminated. The time of surfactant migration can be used for setting up the update time of the oil film in the automatic instrument, which can be designed in the future.展开更多
Shale oil of the Qingshankou Formation of the Gulong Sag,the northern Songliao Basin,represents the first attempt at large-scale development of pure-shale-type shale oil in China.By integrating the multiscale refined ...Shale oil of the Qingshankou Formation of the Gulong Sag,the northern Songliao Basin,represents the first attempt at large-scale development of pure-shale-type shale oil in China.By integrating the multiscale refined reservoir characterization with macro-micro-scale mechanical testing,it is clarified that the Gulong shale is characterized by high clay mineral content,high rock plasticity,highly-developed bedding,and prominent mechanical anisotropy.A three-dimensional(3D)fracture propagation model of hydraulic fracturing was built for the Gulong shale,which fully captures the hydraulic fracture distribution pattern affected by the high bedding density,in-situ stress,and fracturing treatment parameters.Our research showed that due to influences of bedding,hydraulic fracturing in the Gulong shale forms a complex fracture morphology featuring the main fracture with multiple perpendicular branches that have different lengths(like the outdoor directional TV antenna);however,the vertical propagation of fractures is inhibited,and the fracture height is commonly less than 10 m.The limited stimulated reservoir volume(SRV)is the main problem facing the fracturing stimulation of the Gulong shale oil.Bedding density has vital effects on fracture morphology,so case-specific fracturing designs shall be developed for shale intervals with different bedding development degrees.For reservoirs with welldeveloped bedding,it is suggested to properly increase the perforation cluster spacing and raise the volume and proportions of viscous fluids of the pad,so as to effectively promote vertical fracture propagation and improve reservoir stimulation performance.This study integrates multi-scale fine reservoir characterization and macro-micro-scale mechanical testing,as well as the construction and numerical simulation of hydraulic fracturing models for high-density layered shale reservoirs,providing a new approach and methodological framework for the fracturing research of high-density layered shale reservoirs.展开更多
Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified...Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified cellulosic material gained from spent coffee grounds as a tertiary adsorption treatment. The earth-alkaline metal ions and heavy metals were separated from the de-oiled produced water by addition of either sodium or potassium hydroxide in the presence of carbon dioxide or by direct addition of solid sodium carbonate. The resulting filtrate gave salt of industrial purity upon selective crystallization on evaporation.展开更多
While Egypt’s canola production per unit area has recently grown,productivity remains low,necessitating increased productivity.Hydrogels are water-absorbent polymer compounds that can optimize irrigation schedules by...While Egypt’s canola production per unit area has recently grown,productivity remains low,necessitating increased productivity.Hydrogels are water-absorbent polymer compounds that can optimize irrigation schedules by increasing the soil’s ability to retain water.Accordingly,twofield experiments were conducted to examine hydrogel application to sandy soil on canola growth,biochemical aspects,yield,yield traits,and nutritional quality of yielded seeds grown under water deficit stress conditions.The experiments were conducted by arranging a split-plot layout in a randomized complete block design(RCBD)with three times replications of each treatment.While water stress at 75%or 50%of crop evapotranspiration(ETc)lowered chlorophyll a,chlorophyll b,caro-tenoids,and total pigments content,indole-3-acetic acid,plant development,seed yield,and oil and total carbo-hydrates of seed yield,hydrogel treatment enhanced all of the traits mentioned above.Furthermore,hydrogel enhanced to gather compatible solutes(proline,amino acids,total soluble sugars),phenolics content in leaves,seed protein,and crop water productivity,which increased while the plants were under water stress.The results revealed that the full irrigation(100%ETc)along with hydrogel compared to water-stressed(50%ETc)led to enhanced seed yield(kg ha^(-1)),Oil(%),and Total carbohydrates(%)of rapeseed by 57.1%,11.1%and 15.7%,respectively.Likewise,under water-stressed plots with hydrogel exhibited enhancement by 10.0%,3.2%and 5.1%in seed yield(kg ha^(-1)),oil(%),and total carbohydrates(%)of rapeseed by 57.1%,11.1%and 15.7%,respec-tively compared to control.As a result,the use of hydrogel polymer will be a viable and practical solution for increasing agricultural output under water deficit stress situations.展开更多
The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge wit...The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.展开更多
Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline ...Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.展开更多
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utiliz...In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production w...Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
Siliconated polyurethane (Si-PU) was synthesized using isophorone diisocyanate (IPDI), hydroxybutyl-terminated polydimethylsiloxane (PDMS), polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG),...Siliconated polyurethane (Si-PU) was synthesized using isophorone diisocyanate (IPDI), hydroxybutyl-terminated polydimethylsiloxane (PDMS), polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), 1,6-hexanediol (HDO), dimethylol propionic acid (DMPA) and triethylamine (TEA). Based on butyl acrylate (BA), 2, 2, 2-trifluoroethylmethacrylate (TFEMA) and Si-PU as a seed emulsion, a novel core-shell type acrylic-polyurethane hybrid emulsion, containing siloxane and fluorine (F-Si-PU), was prepared by seeded emulsion polymerization. The contents of siloxane and fluorine were determined according to the feed ratio. Fourier transform infrared spectroscopy (FTIR) was used to identify the chain structures of Si-PU and F-Si-PU. Investigation of transmission electron microscopy (TEM) confirmed the core-shell structure of F-Si-PU emulsion. Measurement results of water contact angle and the swelling ratio in water and n-octane for cured film showed that the water and the oil resistances for F-Si-PU had been significantly improved at a suitable content of fluorine and siloxane.展开更多
Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.Th...Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.This mechanism is considered as a reason for EOR.Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials.Generally,instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon.Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction.Therefore,higher in-situ water content can worsen this condition.Besides,this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion,which results in EOR reduction.On the other hand,from gas storage point of view,it should be noted that CO2 solubility is not the same in the water and oil phases.In this study for a specified water salinity,the effects of different connate water saturations(Swc)on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir.The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation,as 14%reduction of Swc resulted in 20%and 16%higher oil recovery and CO2 storage capacity,respectively.展开更多
To investigate the characteristics of hydrate formation in oil–water systems, a high-pressure cell equipped with visual windows was used where a series of hydrate formation experiments were performed from natural gas...To investigate the characteristics of hydrate formation in oil–water systems, a high-pressure cell equipped with visual windows was used where a series of hydrate formation experiments were performed from natural gas + diesel oil + water systems at different water cuts and anti-agglomerant concentrations. According to the temperature and pressure profiles in test experiments, the processes of hydrate formation under two kinds of experimental procedures were analyzed first. Then, based on the experimental phenomena observed through the visual windows, the influences of water cut and anti-agglomerant on the places of hydrate formation and distribution, hydrate morphologies and hydrate morphological evolvements were investigated. Hydrate agglomeration, hydrate deposition and hydrate film growth on the wall were observed in experiments. Furthermore, three different mechanisms for hydrate film growth on the wall were identified. In addition, the influences of water cut and anti-agglomerant on the induction time of hydrate formation were also studied.展开更多
The volatile oil was extracted from water caltrop by steam distillation; it was then analyzed by GC-MS to obtain 16 components, 8 of which were identified. Apocynin was the most abundant one, accounting for 81.41% of ...The volatile oil was extracted from water caltrop by steam distillation; it was then analyzed by GC-MS to obtain 16 components, 8 of which were identified. Apocynin was the most abundant one, accounting for 81.41% of the total oil. The in vitro inhibitory effects of the volatile oil on SMMC-7721, MCF-7, Hela, HL-60 cells, and human peripheral blood mononuclear cells(PBMC) were investigated via the MTT method. The morphological changes of the tumor cells were observed and the apoptosis of HL-60 cells was detected by flow cytometry. The proliferation of the tumor cells could be significantly inhibited and the apoptosis of HL-60 cells could be induced by the volatile oil. The proliferation inhibition effect of the volatile oil on HL-60 tumor cells and the induction of the apoptosis of ilL-60 cells had dose-dependent feature.展开更多
Upper cretaceous and lower tertiary formations groundwater aquifers are associated with huge reserves of oil shale deposits in Harrana and Azraq Basins are evaluated in terms of water qualities and hydrochemical proce...Upper cretaceous and lower tertiary formations groundwater aquifers are associated with huge reserves of oil shale deposits in Harrana and Azraq Basins are evaluated in terms of water qualities and hydrochemical processes. The oil shale deposits are found within the Muwaqqar Chalk Marl Formation. The Muwaqqar Chalk Marl Formation represents the intermediate formation between the Lower Aquifer Amman Silicified Limestone and the overburden, which represents the overlying Upper Aquifers of Um Rijam Chalk and Wadi Shallala Chalk. This study aimed to improve the understanding of Muwaqqar Chalk Marl Formation as a sealing potential based on water quality and hydrochemical data of the different aquifers. Sixty water samples were collected from Amman Silicified Limestone Aquifer, High Grade Zone of Muwaqqar Chalk Marl Formation and from the overburden of Um Rijam Chalk and Wadi Shallala Chalk aquifers. The evaluations of the main hydrochemical processes affecting the groundwater quality were carried out by interpreting the ionic relationships and the water quality types using Piper and Durov diagrams. Comprehensive statistical analyses (Factor and Cluster Analyses) were conducted on the water quality parameters. The factor analyses can extract four factors from the water quality parameters of the Harrana wells Area-1 and for Azraq wells in Area-2. These factors are used to interpret the different geochemical processes affecting the groundwater quality parameters. Cluster analyses divided the Harrana wells into three groups. Cluster I included 26 wells with minimum mean concentrations of cations and anions, while cluster III included the wells with the highest concentrations in the water quality parameters. Cluster II included eight wells with intermediate concentrations. Azraq Area-2 wells are clustered into three groups. Cluster I includes seven wells with lowest water quality (highest concentrations);cluster II includes 12 wells and exhibits the lowest concentrations of ions and cluster III includes five wells that show intermediate ions concentrations. The interpretation indicated that the primary factors controlling the groundwater chemistry of Azraq and Harrana appeared to be dissolution processes of the carbonate rocks containing traces of evaporitic minerals, ion exchange and reversal ion exchange processes. Moreover, the water quality in the study areas is not suitable for drinking purposes.展开更多
Core, well logging and seismic data were used to investigate sandbody architectural characteristics within Lower Member of Minghuazhen Formation in Neogene, Bohai BZ25 Oilfield, and to analyze the sedimentary microfac...Core, well logging and seismic data were used to investigate sandbody architectural characteristics within Lower Member of Minghuazhen Formation in Neogene, Bohai BZ25 Oilfield, and to analyze the sedimentary microfacies, distribution and internal architecture characteristics of the bar finger within shoal water delta front. The branched sand body within shoal water delta front is the bar finger, consisting of the mouth bar, distributary channel over bar, and levee. The distributary channel cuts through the mouth bar, and the thin levee covers the mouth bar which is located at both sides of distributary channel. The bar finger is commonly sinuous and its sinuosity increases basinward. The distributary channel changes from deeply incising the mouth bar to shallowly incising top of the mouth bar.The aspect ratio ranges from 25 to 50 and there is a double logarithmic linear positive relationship between the width and thickness for the bar finger, which is controlled by base-level changing in study area. For the bar finger, injection and production in the same distributary channel should be avoided during water flooding development. In addition, middle–upper distributary channel and undrilled mouth bar are focus of tapping remaining oil.展开更多
Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of ...Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation.展开更多
An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced s...An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced soil washing (SESW) process. The main goal of this study was to characterize the contaminated soil in terms of TPHs, BTEX, PAHs, and metals contents as well as microbiologically (total heterotrophs and specific degrading microorganisms). We also aimed to determine the surfactant type and concentration to be used in the SESW process for the automotive waste oil contaminated soil. At the end, sixteen kg of contaminated soil were washed and the produced wastewater (approximately 40 L) was characterized in terms of COD, BOD;solids, and other physico-chemical parameters. The soil contained about 14,000 mg of TPH/kg soil (heavy fraction), 0.13 mg/kg of benzo (k) fluoranthene and 0.07 mg/kg of benzo (a) pyrene as well as traces of some metals. Metals concentrations were always under the maximum concentration levels suggested by Mexican regulations. 15 different surfactants were used to identify the one with the capability to achieve the highest TPH removal. Surfactants included 5 anionics, 2 zwitterionic, 5 nonionics and 3 natural gums. Sulfopon 30 at a concentration of 0.5% offered the best surfactant performance. The TPH removals employing the different surfactants were in the range from 38% to 68%, in comparison to the soil washing with water (10% of TPH removal). Once the surfactant was selected, 70 kg of soil were washed and the resulting water contained approximately 1300 mg/L of COD, 385 mg/L of BOD (BOD/COD = 0.29), 122 mg/L of MBAS, and 212 mg/L of oil and greases, among other contaminants.展开更多
文摘The functional fractions (acid, basic, amphoteric and neutral fractions) are isolated from the Liaohe Du-84 heavy crude oil and Shengli Gudao Kenxi heavy crude oil by ion-exchange chromatography, but the conventional fractions (saturates, aromatics, resins and asphaltenes) are also isolated from the heavy crude oil. These components have been characterized by spectroscopic methods (FT-IR), namely acid number, basic nitrogen number, ultimate analysis and molecular weight measurements using vapor pressure osmometry (VPO). The ion-exchange chromatography method based on separation by a functional group induces a little change on the nature of the crudes and reasonable mass balances can be easily obtained.
文摘Surfactants are widely used in the petroleum industry as one kind of Enhanced Oil Recovery methods (EOR). The oil sands mines in Northern Alberta are the largest one in the world. Due to using sodium hydroxide in bitumen extraction process, there are a lot of surfactant molecules in the tailing water. The surfactants from oil sands industry have brought a potential threat to the environment and human health. Depending on the performance of surfactant at the interface, this work focuses on removing these harmful surfactants from the tailing water and not bringing other possible hazardous substances. Moreover, a mathematical model is built to calculate the removal efficiency of the surfactant. The time required for removing the surfactant is determined experimentally. In conclusion, most of surfactant molecules are adsorbed at the oil/water interface. The fraction of the surfactant staying at the oil/water interface is high. Most of the surfactants in tailing water can be eliminated. The time of surfactant migration can be used for setting up the update time of the oil film in the automatic instrument, which can be designed in the future.
基金supported by the General Program of National Natural Science Foundation of China(No.52274058)the“Enlisting and Leading”Science and Technology Project of Heilongjiang Province(No.RIPED-2022-JS-1740 and No.RIPED-2022JS-1853)the Central Program of Basic Science of the National Natural Science Foundation of China(No.72088101)。
文摘Shale oil of the Qingshankou Formation of the Gulong Sag,the northern Songliao Basin,represents the first attempt at large-scale development of pure-shale-type shale oil in China.By integrating the multiscale refined reservoir characterization with macro-micro-scale mechanical testing,it is clarified that the Gulong shale is characterized by high clay mineral content,high rock plasticity,highly-developed bedding,and prominent mechanical anisotropy.A three-dimensional(3D)fracture propagation model of hydraulic fracturing was built for the Gulong shale,which fully captures the hydraulic fracture distribution pattern affected by the high bedding density,in-situ stress,and fracturing treatment parameters.Our research showed that due to influences of bedding,hydraulic fracturing in the Gulong shale forms a complex fracture morphology featuring the main fracture with multiple perpendicular branches that have different lengths(like the outdoor directional TV antenna);however,the vertical propagation of fractures is inhibited,and the fracture height is commonly less than 10 m.The limited stimulated reservoir volume(SRV)is the main problem facing the fracturing stimulation of the Gulong shale oil.Bedding density has vital effects on fracture morphology,so case-specific fracturing designs shall be developed for shale intervals with different bedding development degrees.For reservoirs with welldeveloped bedding,it is suggested to properly increase the perforation cluster spacing and raise the volume and proportions of viscous fluids of the pad,so as to effectively promote vertical fracture propagation and improve reservoir stimulation performance.This study integrates multi-scale fine reservoir characterization and macro-micro-scale mechanical testing,as well as the construction and numerical simulation of hydraulic fracturing models for high-density layered shale reservoirs,providing a new approach and methodological framework for the fracturing research of high-density layered shale reservoirs.
文摘Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified cellulosic material gained from spent coffee grounds as a tertiary adsorption treatment. The earth-alkaline metal ions and heavy metals were separated from the de-oiled produced water by addition of either sodium or potassium hydroxide in the presence of carbon dioxide or by direct addition of solid sodium carbonate. The resulting filtrate gave salt of industrial purity upon selective crystallization on evaporation.
基金their appreciation to Researchers Supporting Project No.(RSP2024R298),King Saud University,Riyadh,Saudi Arabia.
文摘While Egypt’s canola production per unit area has recently grown,productivity remains low,necessitating increased productivity.Hydrogels are water-absorbent polymer compounds that can optimize irrigation schedules by increasing the soil’s ability to retain water.Accordingly,twofield experiments were conducted to examine hydrogel application to sandy soil on canola growth,biochemical aspects,yield,yield traits,and nutritional quality of yielded seeds grown under water deficit stress conditions.The experiments were conducted by arranging a split-plot layout in a randomized complete block design(RCBD)with three times replications of each treatment.While water stress at 75%or 50%of crop evapotranspiration(ETc)lowered chlorophyll a,chlorophyll b,caro-tenoids,and total pigments content,indole-3-acetic acid,plant development,seed yield,and oil and total carbo-hydrates of seed yield,hydrogel treatment enhanced all of the traits mentioned above.Furthermore,hydrogel enhanced to gather compatible solutes(proline,amino acids,total soluble sugars),phenolics content in leaves,seed protein,and crop water productivity,which increased while the plants were under water stress.The results revealed that the full irrigation(100%ETc)along with hydrogel compared to water-stressed(50%ETc)led to enhanced seed yield(kg ha^(-1)),Oil(%),and Total carbohydrates(%)of rapeseed by 57.1%,11.1%and 15.7%,respectively.Likewise,under water-stressed plots with hydrogel exhibited enhancement by 10.0%,3.2%and 5.1%in seed yield(kg ha^(-1)),oil(%),and total carbohydrates(%)of rapeseed by 57.1%,11.1%and 15.7%,respec-tively compared to control.As a result,the use of hydrogel polymer will be a viable and practical solution for increasing agricultural output under water deficit stress situations.
基金Enterprise Horizontal Project(Project Contract No.2021K2450)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX22_1437).
文摘The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.
文摘Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
基金Supported by the National Science and Technology Major Project(2016ZX05029001)CNPC Science and Technology Project(2019D-4310)。
文摘In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
文摘Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
基金Financial supports from the National Natural Science Foundation of China(No.50273035)Hangzhou Zhijiang Silicone Chemical Industry Co.,Ltd.are acknowledged.
文摘Siliconated polyurethane (Si-PU) was synthesized using isophorone diisocyanate (IPDI), hydroxybutyl-terminated polydimethylsiloxane (PDMS), polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), 1,6-hexanediol (HDO), dimethylol propionic acid (DMPA) and triethylamine (TEA). Based on butyl acrylate (BA), 2, 2, 2-trifluoroethylmethacrylate (TFEMA) and Si-PU as a seed emulsion, a novel core-shell type acrylic-polyurethane hybrid emulsion, containing siloxane and fluorine (F-Si-PU), was prepared by seeded emulsion polymerization. The contents of siloxane and fluorine were determined according to the feed ratio. Fourier transform infrared spectroscopy (FTIR) was used to identify the chain structures of Si-PU and F-Si-PU. Investigation of transmission electron microscopy (TEM) confirmed the core-shell structure of F-Si-PU emulsion. Measurement results of water contact angle and the swelling ratio in water and n-octane for cured film showed that the water and the oil resistances for F-Si-PU had been significantly improved at a suitable content of fluorine and siloxane.
文摘Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.This mechanism is considered as a reason for EOR.Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials.Generally,instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon.Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction.Therefore,higher in-situ water content can worsen this condition.Besides,this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion,which results in EOR reduction.On the other hand,from gas storage point of view,it should be noted that CO2 solubility is not the same in the water and oil phases.In this study for a specified water salinity,the effects of different connate water saturations(Swc)on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir.The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation,as 14%reduction of Swc resulted in 20%and 16%higher oil recovery and CO2 storage capacity,respectively.
基金supported by Shandong Provincial Natural Science Foundation, China (Grant No. ZR2017MEE057)the Fundamental Research Funds for the Central Universities (14CX02207A, 17CX05006, 17CX06017)the Graduate Innovation Project of China University of Petroleum (East China) (YCX2017062).
文摘To investigate the characteristics of hydrate formation in oil–water systems, a high-pressure cell equipped with visual windows was used where a series of hydrate formation experiments were performed from natural gas + diesel oil + water systems at different water cuts and anti-agglomerant concentrations. According to the temperature and pressure profiles in test experiments, the processes of hydrate formation under two kinds of experimental procedures were analyzed first. Then, based on the experimental phenomena observed through the visual windows, the influences of water cut and anti-agglomerant on the places of hydrate formation and distribution, hydrate morphologies and hydrate morphological evolvements were investigated. Hydrate agglomeration, hydrate deposition and hydrate film growth on the wall were observed in experiments. Furthermore, three different mechanisms for hydrate film growth on the wall were identified. In addition, the influences of water cut and anti-agglomerant on the induction time of hydrate formation were also studied.
基金Supported by the Department of Science and Technology of Jilin Province, China(No. 20070424).
文摘The volatile oil was extracted from water caltrop by steam distillation; it was then analyzed by GC-MS to obtain 16 components, 8 of which were identified. Apocynin was the most abundant one, accounting for 81.41% of the total oil. The in vitro inhibitory effects of the volatile oil on SMMC-7721, MCF-7, Hela, HL-60 cells, and human peripheral blood mononuclear cells(PBMC) were investigated via the MTT method. The morphological changes of the tumor cells were observed and the apoptosis of HL-60 cells was detected by flow cytometry. The proliferation of the tumor cells could be significantly inhibited and the apoptosis of HL-60 cells could be induced by the volatile oil. The proliferation inhibition effect of the volatile oil on HL-60 tumor cells and the induction of the apoptosis of ilL-60 cells had dose-dependent feature.
文摘Upper cretaceous and lower tertiary formations groundwater aquifers are associated with huge reserves of oil shale deposits in Harrana and Azraq Basins are evaluated in terms of water qualities and hydrochemical processes. The oil shale deposits are found within the Muwaqqar Chalk Marl Formation. The Muwaqqar Chalk Marl Formation represents the intermediate formation between the Lower Aquifer Amman Silicified Limestone and the overburden, which represents the overlying Upper Aquifers of Um Rijam Chalk and Wadi Shallala Chalk. This study aimed to improve the understanding of Muwaqqar Chalk Marl Formation as a sealing potential based on water quality and hydrochemical data of the different aquifers. Sixty water samples were collected from Amman Silicified Limestone Aquifer, High Grade Zone of Muwaqqar Chalk Marl Formation and from the overburden of Um Rijam Chalk and Wadi Shallala Chalk aquifers. The evaluations of the main hydrochemical processes affecting the groundwater quality were carried out by interpreting the ionic relationships and the water quality types using Piper and Durov diagrams. Comprehensive statistical analyses (Factor and Cluster Analyses) were conducted on the water quality parameters. The factor analyses can extract four factors from the water quality parameters of the Harrana wells Area-1 and for Azraq wells in Area-2. These factors are used to interpret the different geochemical processes affecting the groundwater quality parameters. Cluster analyses divided the Harrana wells into three groups. Cluster I included 26 wells with minimum mean concentrations of cations and anions, while cluster III included the wells with the highest concentrations in the water quality parameters. Cluster II included eight wells with intermediate concentrations. Azraq Area-2 wells are clustered into three groups. Cluster I includes seven wells with lowest water quality (highest concentrations);cluster II includes 12 wells and exhibits the lowest concentrations of ions and cluster III includes five wells that show intermediate ions concentrations. The interpretation indicated that the primary factors controlling the groundwater chemistry of Azraq and Harrana appeared to be dissolution processes of the carbonate rocks containing traces of evaporitic minerals, ion exchange and reversal ion exchange processes. Moreover, the water quality in the study areas is not suitable for drinking purposes.
基金Supported by the National Natural Science Foundation of China(41772101)China National Science and Technology Major Project(2017ZX05009001-002)
文摘Core, well logging and seismic data were used to investigate sandbody architectural characteristics within Lower Member of Minghuazhen Formation in Neogene, Bohai BZ25 Oilfield, and to analyze the sedimentary microfacies, distribution and internal architecture characteristics of the bar finger within shoal water delta front. The branched sand body within shoal water delta front is the bar finger, consisting of the mouth bar, distributary channel over bar, and levee. The distributary channel cuts through the mouth bar, and the thin levee covers the mouth bar which is located at both sides of distributary channel. The bar finger is commonly sinuous and its sinuosity increases basinward. The distributary channel changes from deeply incising the mouth bar to shallowly incising top of the mouth bar.The aspect ratio ranges from 25 to 50 and there is a double logarithmic linear positive relationship between the width and thickness for the bar finger, which is controlled by base-level changing in study area. For the bar finger, injection and production in the same distributary channel should be avoided during water flooding development. In addition, middle–upper distributary channel and undrilled mouth bar are focus of tapping remaining oil.
基金Financial support from the Science Fund for Creative Research Groups of the National Science Foundation of China (22021005)the National Natural Science Foundation of China (21776032)the Innovation Team of Dalian University of Technology (DUT2017TB01)。
文摘Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation.
文摘An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced soil washing (SESW) process. The main goal of this study was to characterize the contaminated soil in terms of TPHs, BTEX, PAHs, and metals contents as well as microbiologically (total heterotrophs and specific degrading microorganisms). We also aimed to determine the surfactant type and concentration to be used in the SESW process for the automotive waste oil contaminated soil. At the end, sixteen kg of contaminated soil were washed and the produced wastewater (approximately 40 L) was characterized in terms of COD, BOD;solids, and other physico-chemical parameters. The soil contained about 14,000 mg of TPH/kg soil (heavy fraction), 0.13 mg/kg of benzo (k) fluoranthene and 0.07 mg/kg of benzo (a) pyrene as well as traces of some metals. Metals concentrations were always under the maximum concentration levels suggested by Mexican regulations. 15 different surfactants were used to identify the one with the capability to achieve the highest TPH removal. Surfactants included 5 anionics, 2 zwitterionic, 5 nonionics and 3 natural gums. Sulfopon 30 at a concentration of 0.5% offered the best surfactant performance. The TPH removals employing the different surfactants were in the range from 38% to 68%, in comparison to the soil washing with water (10% of TPH removal). Once the surfactant was selected, 70 kg of soil were washed and the resulting water contained approximately 1300 mg/L of COD, 385 mg/L of BOD (BOD/COD = 0.29), 122 mg/L of MBAS, and 212 mg/L of oil and greases, among other contaminants.