Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of e...Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of engine oil on the consistency and thermal properties of HDPE-modified asphalt. For this study, compositions containing asphalt, engine oil and high-density polyethylene (HDPE) were prepared, varying the concentration of engine oil by 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt% and keeping the concentration of HDPE at 5 wt%. The samples were characterized by conventional tests of penetration, softening point and viscosity, aging in a Rotational Thin Film Oven (RTFO), Thermogravimetric Analysis (TGA). According to the results, the addition of HDPE to virgin asphalt causes an increase in the consistency of the virgin asphalt, which then decreases linearly as the engine oil is added into the matrix. Conventional tests showed improvements in the applicability of the asphalt in terms of resistance to cracks and permanent deformation. TGA showed a slight increase in stability for the modified asphalt samples at elevated temperatures. The RTFO showed mass gain and loss for samples with and without engine oil, respectively.展开更多
以煤制油沥青(coal to oil asphalt,CTOA)为原料,加入乙烯焦油沥青(ethylene tar pitch,ETP)进行改性,采用热聚合法制备出高品质的包覆沥青。在最佳热聚合工艺条件下制备出200^(#)包覆沥青;利用元素分析仪、红外光谱仪、拉曼光谱仪、X...以煤制油沥青(coal to oil asphalt,CTOA)为原料,加入乙烯焦油沥青(ethylene tar pitch,ETP)进行改性,采用热聚合法制备出高品质的包覆沥青。在最佳热聚合工艺条件下制备出200^(#)包覆沥青;利用元素分析仪、红外光谱仪、拉曼光谱仪、X射线衍射仪、扫描电子显微镜、热重分析仪等对包覆沥青的微观形貌、结构和组成进行分析。结果表明,相较于空气氧化法和催化交联聚合法,改性和热聚合所制备的200^(#)包覆沥青的QI和灰分质量分数显著降低,产品性能优异;微观结构和组成分析表明,包覆沥青分子具有较高的碳质量分数和芳香缩合度,分子中类石墨结构增多,碳微晶排列规整,热重分析结果进一步证实其热稳定性显著增强,可用作锂电负极包覆材料。展开更多
Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic...Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic crude oil is unfit for the production of highway paving asphalts directly, Neither are the de-oiled asphalts of the YVR. In this research a blending method and an optimal process of solvent de-asphalts are adopted to investigate the feasibility of formulating highway-paving asphalts from YVR. Results show that highway paving asphalts are formulated by blending solvent de-oiled asphalts with one or more of the materials including YVR, decanted oil from FCC process, and furfural extracts from lubricating base stocks. Further investigations indicate that adding oil decanted from FCC process to the solvent de-asphalting process can increase the de-asphalted oil production, improve the de-oiled asphalts quality, and thus optimize the refinery processes. The methodology of this research can be extended even to refineries processing non-paraffinic crude oils.展开更多
文摘Modification of asphalt using polymers, oils and other additives has been an option to improve asphalt pavement performance and extend its lifespan. The present work aims to evaluate the influence of the addition of engine oil on the consistency and thermal properties of HDPE-modified asphalt. For this study, compositions containing asphalt, engine oil and high-density polyethylene (HDPE) were prepared, varying the concentration of engine oil by 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt% and keeping the concentration of HDPE at 5 wt%. The samples were characterized by conventional tests of penetration, softening point and viscosity, aging in a Rotational Thin Film Oven (RTFO), Thermogravimetric Analysis (TGA). According to the results, the addition of HDPE to virgin asphalt causes an increase in the consistency of the virgin asphalt, which then decreases linearly as the engine oil is added into the matrix. Conventional tests showed improvements in the applicability of the asphalt in terms of resistance to cracks and permanent deformation. TGA showed a slight increase in stability for the modified asphalt samples at elevated temperatures. The RTFO showed mass gain and loss for samples with and without engine oil, respectively.
文摘以煤制油沥青(coal to oil asphalt,CTOA)为原料,加入乙烯焦油沥青(ethylene tar pitch,ETP)进行改性,采用热聚合法制备出高品质的包覆沥青。在最佳热聚合工艺条件下制备出200^(#)包覆沥青;利用元素分析仪、红外光谱仪、拉曼光谱仪、X射线衍射仪、扫描电子显微镜、热重分析仪等对包覆沥青的微观形貌、结构和组成进行分析。结果表明,相较于空气氧化法和催化交联聚合法,改性和热聚合所制备的200^(#)包覆沥青的QI和灰分质量分数显著降低,产品性能优异;微观结构和组成分析表明,包覆沥青分子具有较高的碳质量分数和芳香缩合度,分子中类石墨结构增多,碳微晶排列规整,热重分析结果进一步证实其热稳定性显著增强,可用作锂电负极包覆材料。
文摘Many specifications of paving asphalts are closely related to their colloidal stability, which is, however, determined by their exact chemical compositions. The Yumen vacuum residue (YVR), the bottoms of a paraffinic crude oil is unfit for the production of highway paving asphalts directly, Neither are the de-oiled asphalts of the YVR. In this research a blending method and an optimal process of solvent de-asphalts are adopted to investigate the feasibility of formulating highway-paving asphalts from YVR. Results show that highway paving asphalts are formulated by blending solvent de-oiled asphalts with one or more of the materials including YVR, decanted oil from FCC process, and furfural extracts from lubricating base stocks. Further investigations indicate that adding oil decanted from FCC process to the solvent de-asphalting process can increase the de-asphalted oil production, improve the de-oiled asphalts quality, and thus optimize the refinery processes. The methodology of this research can be extended even to refineries processing non-paraffinic crude oils.