Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numeri...Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.展开更多
It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investm...It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investment and environmental benefits.However,as a significant evaluation,the environmental factors haven’t been considered in the previous study.Considering this factor,the mathematical model of economic insulation thickness of the buried hot oil pipelines is built in this paper,which is solved by the golden section method while considering the costs of investment,operation,environment,the time value of money.The environmental cost is determined according to the pollutant discharge calculated through relating heat loss of the pipelines to the air emission while building the model.The results primarily showed that the most saving fuel is natural gas,followed by LPG,fuel oil,and coal.The fuel consumption for identical insulation thickness is in the order:coal,fuel oil,LPG,and natural gas.When taking the environmental costs into account,the thicker the economic insulation layer is,the higher cost it will be.Meanwhile,the more pollutant discharge,the thicker the economic insulation layer will be.展开更多
基金National Natural Science Foundation of China under Grant Nos.52078386 and 52308496SINOMACH Youth Science and Technology Fund under Grant No.QNJJ-PY-2022-02+2 种基金Young Elite Scientists Sponsorship Program under Grant No.BYESS2023432Fund of State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University under Grant No.PBSKL2023A9Fund of China Railway Construction Group Co.,Ltd.under Grant No.LX19-04b。
文摘Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.
基金funded by the National Natural Science Foundation of China(NO.51704236)the Graduate Innovation and Practice Ability Development Program of Xi’an Shiyou University(NO.YCS19113037).
文摘It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investment and environmental benefits.However,as a significant evaluation,the environmental factors haven’t been considered in the previous study.Considering this factor,the mathematical model of economic insulation thickness of the buried hot oil pipelines is built in this paper,which is solved by the golden section method while considering the costs of investment,operation,environment,the time value of money.The environmental cost is determined according to the pollutant discharge calculated through relating heat loss of the pipelines to the air emission while building the model.The results primarily showed that the most saving fuel is natural gas,followed by LPG,fuel oil,and coal.The fuel consumption for identical insulation thickness is in the order:coal,fuel oil,LPG,and natural gas.When taking the environmental costs into account,the thicker the economic insulation layer is,the higher cost it will be.Meanwhile,the more pollutant discharge,the thicker the economic insulation layer will be.