A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%o...A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%of original oil in place from these reserves, the need for enhanced oil recovery(EOR) techniques for incremental oil recovery has become imperative. With the challenges presented by the highly heterogeneous carbonate rocks,evaluation of tertiary-stage recovery techniques including chemical EOR(c EOR) has been a high priority for researchers and oil producers. In this review, the latest developments in the surfactant-based c EOR techniques applied in carbonate formations are discussed, contemplating the future direction of existing methodologies. In connection with this, the characteristics of heterogeneous carbonate reservoirs are outlined. Detailed discussion on surfactant-led oil recovery mechanisms and related processes, such as wettability alteration, interfacial tension reduction, microemulsion phase behavior, surfactant adsorption and mitigation, and foams and their applications is presented. Laboratory experiments, as well as field study data obtained using several surfactants, are also included.This extensive discussion on the subject aims to help researchers and professionals in the field to understand the current situation and plan future enterprises accordingly.展开更多
In enhanced oil recovery,different chemicalmethods utilization improves hydrocarbon recovery due to their fascinating abilities to alter some critical parameters in porous media,such as mobility control,the interactio...In enhanced oil recovery,different chemicalmethods utilization improves hydrocarbon recovery due to their fascinating abilities to alter some critical parameters in porous media,such as mobility control,the interaction between fluid to fluid,and fluid to rock surface.For decades the use of surfactant and polymer flooding has been used as tertiary recovery methods.In the current research,the inclusion of nanomaterials in enhanced oil recovery injection fluids solely or in the presence of other chemicals has got colossal interest.The emphasis of this review is on the applicability of nanofluids in the chemical enhanced oil recovery.The responsiblemechanisms are an increment in the viscosity of injection fluid,decrement in oil viscosity,reduction in interfacial and surface tension,and alteration of wettability in the rock formation.In this review,important parameters are presented,which may affect the desired behavior of nanoparticles,and the drawbacks of nanofluid and polymer flooding and the need for a combination of nanoparticles with the polymer are discussed.Due to the lack of literature in defining the mechanism of nanofluid in a reservoir,this paper covers majorly all the previous work done on the application of nanoparticles in chemical enhanced oil recovery at home conditions.Finally,the problems associatedwith the nano-enhanced oil recovery are outlined,and the research gap is identified,which must be addressed to implement polymeric nanofluids in chemical enhanced oil recovery.展开更多
India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required t...India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required to reduce the import of crude from the OPEC(Organization of the Petroleum Exporting Countries).This review mentions chemical EOR techniques(polymers,surfactants,alkali,nanoparticles,and combined alkali-surfactant-polymer flooding)and operations in India.Chemical EOR methods are one of the most efficient methods for oil displacement.The efficiency is enhanced by interfacial tension(IFT)reduction using surfactants and alkali,and mobility control of injected water is done by adding a polymer to increase the volumetric sweep efficiency.This paper also reviews the current trend of chemical EOR,prospects of chemical EOR in Indian oilfields,the development of chemical EOR in India with their challenges raising with economics,and screening criteria for chemical EOR implementation on the field scale.Furthermore,the review gives a brief idea about chemical EOR implementation in Indian oilfields in future prospects to increase the additional oil recovery from existing depleted fields to reduce the import of crude oil.The outcome of this review depicts all chemical EOR operations and recovery rates both at the laboratory scale and field scale around the country.The additional recovery rates are compared from various chemical EOR methods like conventional chemical flooding methods and conventional chemicals combined with nanoparticles on a laboratory scale.The development of chemical EOR in the past few decades and the EOR policy given by the government of India has been mentioned in this review.The analysis provides an idea about enhanced recovery screening and implementation of chemical EOR methods in existing fields will significantly reduce the energy crisis in India.展开更多
The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The p...The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems.展开更多
A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media....A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.展开更多
Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production leve...Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production level during the blank water flooding stage is proposed.According to the basic principle of reservoir engineering that the“recovery factor is equal to sweeping coefficient multiplied by oil displacement efficiency”,the formula for calculating the ultimate oil recovery factor of chemical combination flooding reservoir was established.By dividing the reservoir into a series of grids according to differen-tial calculus thinking,the relationship between the ultimate recovery factor of a certain number of grids and the recovery de-gree of the reservoir was established,and then the variation law of oil production rate of the STRC reservoir was obtained.The concept of“oil rate enlargement factor of chemical combination flooding”was defined,and a production calculation method of reservoir developed by STRC was put forward based on practical oilfield development experience.The study shows that the oil production enhancing effect of STRC increases evenly with the in crease of the ratio of STRC displacement efficiency to water displacement efficiency,and increases rapidly with the increase of the ratio of recovery degree at flooding mode conversion to the water displacement efficiency.STRC is more effective in increasing oil production of reservoir with high recovery degree.Through practical tests of the alkali free binary flooding(polymer/surfactant)projects,the relative error of the oil production calculation method of STRC reservoir is about±10%,which meets the requirements of reservoir engineering.展开更多
A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porou...A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porous media. Some techniques, e.g., the calculus of variations, the energy analysis method, the commutativity of the products of difference operators, the decomposition of high-order difference operators, and the theory of a priori estimate, are introduced. An optimal order error estimate in the l2 norm is derived. The method is successfully used in the numerical simulation of the enhanced oil production in actual oilfields. The simulation results are satisfactory and interesting.展开更多
Hydrolyzed polyacrylamide(HPAM)is a commonly used polymer for the chemicals,mining and refining processes of hydrocarbon but suffers from a persistent high-temperature instability problem.In contrast,the nanoparticle ...Hydrolyzed polyacrylamide(HPAM)is a commonly used polymer for the chemicals,mining and refining processes of hydrocarbon but suffers from a persistent high-temperature instability problem.In contrast,the nanoparticle suspension remains a technical challenge because of the strong interactions of van der Waal forces within nanoparticles,which always encourage aggregation.This research sought to improve nanoparticles(NP)stability and polymer(HPAM)rheological properties to improved hydrocarbon recovery by utilizing synthesized graphene oxide(GO)nanosheets and fumed Aerosil 380 Silica oxide(SiO_(2)).The aqueous nanocomposites based on HPAM-GO and HPAM-SiO_(2) in aqueous polymeric solutions have been developed,and its viscoelastic and static behaviour is studied.The results imply that by adding fumed silica NP,the viscoelastic behaviour of HPAM is marginally improved,particularly in high temperatures and salinity,however,the inclusion of GO's significantly improves the viscosity and stability of the base polymer fluid at high temperatures.The Fourier data for the transformation of the infrared spectrum confirmed that the hydrogen bonding formed between HPAM carbonyl groups and silica NP surface silanol functionality and covalent interlinking of electrostatic h-bonding between HPAM and functional GO contributed to the improved stabilization and improved rheological performance that helps to recover high salinity and temperature hydrocarbons.展开更多
A kind of conservative upwind method is discussed for chemical oil recovery displacement in porous media.The mathematical model is formulated by a nonlinear convection-diffusion system dependent on the pressure,Darcy ...A kind of conservative upwind method is discussed for chemical oil recovery displacement in porous media.The mathematical model is formulated by a nonlinear convection-diffusion system dependent on the pressure,Darcy velocity,concentration and saturations.The flow equation is solved by a conservative block-centered method,and the pressure and Darcy velocity are obtained at the same time.The concentration and saturations are determined by convection-dominated diffusion equations,so an upwind approximation is adopted to eliminate numerical dispersion and nonphysical oscillation.Block-centered method is conservative locally.An upwind method with block-centered difference is used for computing the concentration.The saturations of different components are solved by the method of upwind fractional step difference,and the computational work is shortened significantly by dividing a three-dimensional problem into three successive one-dimensional problems and using the method of speedup.Using the variation discussion,energy estimates,the method of duality,and the theory of a priori estimates,we complete numerical analysis.Finally,numerical tests are given for showing the computational accuracy,efficiency and practicability of our approach.展开更多
In spite of the role of alkali in enhancing oil recovery(EOR), the formation of precipitation during alkaline-surfactant-polymer(ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been ...In spite of the role of alkali in enhancing oil recovery(EOR), the formation of precipitation during alkaline-surfactant-polymer(ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been observed in situ tests of oil fields such as scale deposits found in oil stratum and at the bottom of oil wells. On the other hand,remarkable variation of stratum parameters, e.g., pore radius,porosity, and permeability due to scale formation considerably affects seepage flow and alkaline flooding process in return. The objective of this study is to firstly examine these mutual influential phenomena and corresponding mechanisms along with EOR during alkaline flooding when the effects of precipitation are no longer negligible. The chemical kinetic theory is applied for the specific fundamental reactions to describe the process of rock dissolution in silicabased reservoirs. The solubility product principle is used to analyze the mechanism of alkali scale formation in flooding.Then a 3D alkaline flooding coupling model accounting for the variation of porosity and permeability is established to quantitatively estimate the impact of alkali scales on reservoir stratum. The reliability of the present model is verified in comparison with indoor experiments and field tests of the Daqing oil field. Then, the numerical simulations on a 1/4well group in a 5-spot pattern show that the precipitation grows with alkali concentration, temperature, and injection pressure and, thus, reduces reservoir permeability and oil recovery correspondingly. As a result, the selection of alkaliwith a weak base is preferable in ASP flooding by tradeoff strategy.展开更多
文摘A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%of original oil in place from these reserves, the need for enhanced oil recovery(EOR) techniques for incremental oil recovery has become imperative. With the challenges presented by the highly heterogeneous carbonate rocks,evaluation of tertiary-stage recovery techniques including chemical EOR(c EOR) has been a high priority for researchers and oil producers. In this review, the latest developments in the surfactant-based c EOR techniques applied in carbonate formations are discussed, contemplating the future direction of existing methodologies. In connection with this, the characteristics of heterogeneous carbonate reservoirs are outlined. Detailed discussion on surfactant-led oil recovery mechanisms and related processes, such as wettability alteration, interfacial tension reduction, microemulsion phase behavior, surfactant adsorption and mitigation, and foams and their applications is presented. Laboratory experiments, as well as field study data obtained using several surfactants, are also included.This extensive discussion on the subject aims to help researchers and professionals in the field to understand the current situation and plan future enterprises accordingly.
基金We acknowledge the financial support from Dawood University of Engineering and Technology Karachi,Pakistan,under the project:“Strengthening of DUET”and Department of Petroleum Engineering,Universiti Teknologi PETRONAS,Malaysia.
文摘In enhanced oil recovery,different chemicalmethods utilization improves hydrocarbon recovery due to their fascinating abilities to alter some critical parameters in porous media,such as mobility control,the interaction between fluid to fluid,and fluid to rock surface.For decades the use of surfactant and polymer flooding has been used as tertiary recovery methods.In the current research,the inclusion of nanomaterials in enhanced oil recovery injection fluids solely or in the presence of other chemicals has got colossal interest.The emphasis of this review is on the applicability of nanofluids in the chemical enhanced oil recovery.The responsiblemechanisms are an increment in the viscosity of injection fluid,decrement in oil viscosity,reduction in interfacial and surface tension,and alteration of wettability in the rock formation.In this review,important parameters are presented,which may affect the desired behavior of nanoparticles,and the drawbacks of nanofluid and polymer flooding and the need for a combination of nanoparticles with the polymer are discussed.Due to the lack of literature in defining the mechanism of nanofluid in a reservoir,this paper covers majorly all the previous work done on the application of nanoparticles in chemical enhanced oil recovery at home conditions.Finally,the problems associatedwith the nano-enhanced oil recovery are outlined,and the research gap is identified,which must be addressed to implement polymeric nanofluids in chemical enhanced oil recovery.
文摘India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required to reduce the import of crude from the OPEC(Organization of the Petroleum Exporting Countries).This review mentions chemical EOR techniques(polymers,surfactants,alkali,nanoparticles,and combined alkali-surfactant-polymer flooding)and operations in India.Chemical EOR methods are one of the most efficient methods for oil displacement.The efficiency is enhanced by interfacial tension(IFT)reduction using surfactants and alkali,and mobility control of injected water is done by adding a polymer to increase the volumetric sweep efficiency.This paper also reviews the current trend of chemical EOR,prospects of chemical EOR in Indian oilfields,the development of chemical EOR in India with their challenges raising with economics,and screening criteria for chemical EOR implementation on the field scale.Furthermore,the review gives a brief idea about chemical EOR implementation in Indian oilfields in future prospects to increase the additional oil recovery from existing depleted fields to reduce the import of crude oil.The outcome of this review depicts all chemical EOR operations and recovery rates both at the laboratory scale and field scale around the country.The additional recovery rates are compared from various chemical EOR methods like conventional chemical flooding methods and conventional chemicals combined with nanoparticles on a laboratory scale.The development of chemical EOR in the past few decades and the EOR policy given by the government of India has been mentioned in this review.The analysis provides an idea about enhanced recovery screening and implementation of chemical EOR methods in existing fields will significantly reduce the energy crisis in India.
基金Supported by the National Natural Science Foundation of China(11101124 and 11271231)Natural Science Foundation of Shandong Province(ZR2016AM08)National Tackling Key Problems Program(2011ZX05052,2011ZX05011-004)
文摘The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve the important problems.
基金supported by the Major State Basic Research Development Program of China(G19990328)National Tackling Key Program(2011ZX05011-004+6 种基金2011ZX0505220050200069)National Natural Science Foundation of China(11101244112712311077112410372052)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.
基金Supported by the National Science and Technology Major Project of China (2016ZX05010).
文摘Based on the analysis of the production composition of reservoirs developed by the second&tertiary recovery combination(STRC),the relationship between the overall output of the STRC project and the production level during the blank water flooding stage is proposed.According to the basic principle of reservoir engineering that the“recovery factor is equal to sweeping coefficient multiplied by oil displacement efficiency”,the formula for calculating the ultimate oil recovery factor of chemical combination flooding reservoir was established.By dividing the reservoir into a series of grids according to differen-tial calculus thinking,the relationship between the ultimate recovery factor of a certain number of grids and the recovery de-gree of the reservoir was established,and then the variation law of oil production rate of the STRC reservoir was obtained.The concept of“oil rate enlargement factor of chemical combination flooding”was defined,and a production calculation method of reservoir developed by STRC was put forward based on practical oilfield development experience.The study shows that the oil production enhancing effect of STRC increases evenly with the in crease of the ratio of STRC displacement efficiency to water displacement efficiency,and increases rapidly with the increase of the ratio of recovery degree at flooding mode conversion to the water displacement efficiency.STRC is more effective in increasing oil production of reservoir with high recovery degree.Through practical tests of the alkali free binary flooding(polymer/surfactant)projects,the relative error of the oil production calculation method of STRC reservoir is about±10%,which meets the requirements of reservoir engineering.
基金Project supported by the Major State Basic Research Development Program of China(No.G19990328)the National Natural Science Foundation of China(Nos.10771124,10372052,and 11101244)+2 种基金the National Tackling Key Problems Program of China(Nos.2011ZX05011-004,2011ZX05052,and 2005020069)the Doctorate Foundation of the Ministry of Education of China(No.20030422047)the Natural Science Foundation of Shandong Province of China(No.ZR2011AM015)
文摘A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porous media. Some techniques, e.g., the calculus of variations, the energy analysis method, the commutativity of the products of difference operators, the decomposition of high-order difference operators, and the theory of a priori estimate, are introduced. An optimal order error estimate in the l2 norm is derived. The method is successfully used in the numerical simulation of the enhanced oil production in actual oilfields. The simulation results are satisfactory and interesting.
基金supported by Dawood University of Engineering and Technology Karachi,Pakistan,under the project:“Strengthening of DUET”。
文摘Hydrolyzed polyacrylamide(HPAM)is a commonly used polymer for the chemicals,mining and refining processes of hydrocarbon but suffers from a persistent high-temperature instability problem.In contrast,the nanoparticle suspension remains a technical challenge because of the strong interactions of van der Waal forces within nanoparticles,which always encourage aggregation.This research sought to improve nanoparticles(NP)stability and polymer(HPAM)rheological properties to improved hydrocarbon recovery by utilizing synthesized graphene oxide(GO)nanosheets and fumed Aerosil 380 Silica oxide(SiO_(2)).The aqueous nanocomposites based on HPAM-GO and HPAM-SiO_(2) in aqueous polymeric solutions have been developed,and its viscoelastic and static behaviour is studied.The results imply that by adding fumed silica NP,the viscoelastic behaviour of HPAM is marginally improved,particularly in high temperatures and salinity,however,the inclusion of GO's significantly improves the viscosity and stability of the base polymer fluid at high temperatures.The Fourier data for the transformation of the infrared spectrum confirmed that the hydrogen bonding formed between HPAM carbonyl groups and silica NP surface silanol functionality and covalent interlinking of electrostatic h-bonding between HPAM and functional GO contributed to the improved stabilization and improved rheological performance that helps to recover high salinity and temperature hydrocarbons.
基金the Natural Science Foundation of Shandong Province(Grant No.ZR2021MA019)Natural Science Foundation of Hunan Province(Grant No.2018JJ2028)National Natural Science Foundation of China(Grant No.11871312).
文摘A kind of conservative upwind method is discussed for chemical oil recovery displacement in porous media.The mathematical model is formulated by a nonlinear convection-diffusion system dependent on the pressure,Darcy velocity,concentration and saturations.The flow equation is solved by a conservative block-centered method,and the pressure and Darcy velocity are obtained at the same time.The concentration and saturations are determined by convection-dominated diffusion equations,so an upwind approximation is adopted to eliminate numerical dispersion and nonphysical oscillation.Block-centered method is conservative locally.An upwind method with block-centered difference is used for computing the concentration.The saturations of different components are solved by the method of upwind fractional step difference,and the computational work is shortened significantly by dividing a three-dimensional problem into three successive one-dimensional problems and using the method of speedup.Using the variation discussion,energy estimates,the method of duality,and the theory of a priori estimates,we complete numerical analysis.Finally,numerical tests are given for showing the computational accuracy,efficiency and practicability of our approach.
基金supported by the National Basic Research Program of China (Grant 2005CB221300)the National Natural Science Foundation of China (Grant 11302234)
文摘In spite of the role of alkali in enhancing oil recovery(EOR), the formation of precipitation during alkaline-surfactant-polymer(ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been observed in situ tests of oil fields such as scale deposits found in oil stratum and at the bottom of oil wells. On the other hand,remarkable variation of stratum parameters, e.g., pore radius,porosity, and permeability due to scale formation considerably affects seepage flow and alkaline flooding process in return. The objective of this study is to firstly examine these mutual influential phenomena and corresponding mechanisms along with EOR during alkaline flooding when the effects of precipitation are no longer negligible. The chemical kinetic theory is applied for the specific fundamental reactions to describe the process of rock dissolution in silicabased reservoirs. The solubility product principle is used to analyze the mechanism of alkali scale formation in flooding.Then a 3D alkaline flooding coupling model accounting for the variation of porosity and permeability is established to quantitatively estimate the impact of alkali scales on reservoir stratum. The reliability of the present model is verified in comparison with indoor experiments and field tests of the Daqing oil field. Then, the numerical simulations on a 1/4well group in a 5-spot pattern show that the precipitation grows with alkali concentration, temperature, and injection pressure and, thus, reduces reservoir permeability and oil recovery correspondingly. As a result, the selection of alkaliwith a weak base is preferable in ASP flooding by tradeoff strategy.