CO_(2) flooding has been widely studied and applied to improve oil recovery from low permeability reservoirs.Both the experimental results and the oilfield production data indicate that produced oil components(POC)wil...CO_(2) flooding has been widely studied and applied to improve oil recovery from low permeability reservoirs.Both the experimental results and the oilfield production data indicate that produced oil components(POC)will vary during CO_(2) flooding in low permeability reservoirs.However,the present researches fail to explain the variation reason and rule.In this study,the physical model of the POC variation during CO_(2) flooding in low permeability reservoir was established,and the variation reason and rule were defined.To verify the correctness of the physical model,the interaction rule of the oil-CO_(2) system was studied by related experiments.The numerical model,including 34 components,was established based on the precise experiments matching,and simulated the POC variation during CO_(2) flooding in low permeability reservoir at different inter-well reservoir characteristics.The POC monitoring data of the CO_(2) flooding pilot test area in northeastern China were analyzed,and the POC variation rule during the oilfield production was obtained.The research results indicated that the existence of the inter-well channeling-path and the permeability difference between matrix and channeling-path are the main reasons for the POC variation during CO_(2) flooding in low permeability reservoirs.The POC variation rules are not the same at different inter-well reservoir characteristics.For the low permeability reservoirs with homogeneous inter-well reservoir,the variation of the light hydrocarbon content in POC increases initially followed by a decrease,while the variation of the heavy hydrocarbon content in POC is completely opposite.The carbon number of the most abundant component in POC will gradually increase.For the low permeability reservoirs with the channeling-path existing in the inter-well reservoir,the variation rule of the light hydrocarbon content in POC is increase-decrease-increase-decrease,while the variation rule of the heavy hydrocarbon content in POC is completely opposite.The carbon number variation rule of the most abundant component in POC is increase-decrease-increase.展开更多
In this study, an ionic liquid(IL), 1-butyl-2,3-dimmmethylimidazolium hexafluorophosphate([Bmmim][PF6]),was used in combination with a composite solvent of methyl acetate and n-heptane to enhance the oil extraction fr...In this study, an ionic liquid(IL), 1-butyl-2,3-dimmmethylimidazolium hexafluorophosphate([Bmmim][PF6]),was used in combination with a composite solvent of methyl acetate and n-heptane to enhance the oil extraction from oily sludge. The oil recovery increased by approximately 15% compared with that of solvent extraction without [Bmmim][PF6] at the optimal ratios of IL to sludge and solvents to sludge, which were at 2:5(M/M) and 4:1(V/M), respectively. The saturate, aromatic, resin and asphaltene(SARA) analysis revealed that the recovery of resins and asphaltenes was increased by 14% and 38%, respectively, in the solvent extraction with the addition of [Bmmim][PF6]. [Bmmim][PF6] maintained a good performance after its reuse four times. The addition of[Bmmim][PF6] changed the adhesion forces between oil and soil. The IL-assisted solvent extraction procedure followed the pseudo second-order kinetic model, while the unassisted solvent extraction procedure followed the pseudo first-order kinetic model. The results also demonstrated that [Bmmim][PF6] decreased the solvent consumption by approximately 60% each time. Additionally, [Bmmim][PF6] can be easily separated. The results suggested that enhancing the solvent extraction with this IL is a promising way to recover oil from oily sludge with a higher oil recovery rate and lower organic solvent consumption than those with the unassisted solvent extraction method.展开更多
基金supported by the National Key Research and Development Plan(No.2018YFB0605500)National Science and Technology Major Projects(No.2017ZX05009004).
文摘CO_(2) flooding has been widely studied and applied to improve oil recovery from low permeability reservoirs.Both the experimental results and the oilfield production data indicate that produced oil components(POC)will vary during CO_(2) flooding in low permeability reservoirs.However,the present researches fail to explain the variation reason and rule.In this study,the physical model of the POC variation during CO_(2) flooding in low permeability reservoir was established,and the variation reason and rule were defined.To verify the correctness of the physical model,the interaction rule of the oil-CO_(2) system was studied by related experiments.The numerical model,including 34 components,was established based on the precise experiments matching,and simulated the POC variation during CO_(2) flooding in low permeability reservoir at different inter-well reservoir characteristics.The POC monitoring data of the CO_(2) flooding pilot test area in northeastern China were analyzed,and the POC variation rule during the oilfield production was obtained.The research results indicated that the existence of the inter-well channeling-path and the permeability difference between matrix and channeling-path are the main reasons for the POC variation during CO_(2) flooding in low permeability reservoirs.The POC variation rules are not the same at different inter-well reservoir characteristics.For the low permeability reservoirs with homogeneous inter-well reservoir,the variation of the light hydrocarbon content in POC increases initially followed by a decrease,while the variation of the heavy hydrocarbon content in POC is completely opposite.The carbon number of the most abundant component in POC will gradually increase.For the low permeability reservoirs with the channeling-path existing in the inter-well reservoir,the variation rule of the light hydrocarbon content in POC is increase-decrease-increase-decrease,while the variation rule of the heavy hydrocarbon content in POC is completely opposite.The carbon number variation rule of the most abundant component in POC is increase-decrease-increase.
基金financial support from the National Natural Science Foundation of China(Nos.41807133 and 41977142)the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(No.18K05ESPCT)the Fundamental Research Funds for the Central Universities(PT1915)。
文摘In this study, an ionic liquid(IL), 1-butyl-2,3-dimmmethylimidazolium hexafluorophosphate([Bmmim][PF6]),was used in combination with a composite solvent of methyl acetate and n-heptane to enhance the oil extraction from oily sludge. The oil recovery increased by approximately 15% compared with that of solvent extraction without [Bmmim][PF6] at the optimal ratios of IL to sludge and solvents to sludge, which were at 2:5(M/M) and 4:1(V/M), respectively. The saturate, aromatic, resin and asphaltene(SARA) analysis revealed that the recovery of resins and asphaltenes was increased by 14% and 38%, respectively, in the solvent extraction with the addition of [Bmmim][PF6]. [Bmmim][PF6] maintained a good performance after its reuse four times. The addition of[Bmmim][PF6] changed the adhesion forces between oil and soil. The IL-assisted solvent extraction procedure followed the pseudo second-order kinetic model, while the unassisted solvent extraction procedure followed the pseudo first-order kinetic model. The results also demonstrated that [Bmmim][PF6] decreased the solvent consumption by approximately 60% each time. Additionally, [Bmmim][PF6] can be easily separated. The results suggested that enhancing the solvent extraction with this IL is a promising way to recover oil from oily sludge with a higher oil recovery rate and lower organic solvent consumption than those with the unassisted solvent extraction method.