The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,...The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation.展开更多
In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the dif...In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.展开更多
Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infra...Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications.展开更多
Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind...Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.展开更多
<i>In-situ</i> conversion of process of oil shale has been technically proven as a pilot field project. Gradually heating the reservoir by using subsurface electric heaters converts the oil shale reservoir...<i>In-situ</i> conversion of process of oil shale has been technically proven as a pilot field project. Gradually heating the reservoir by using subsurface electric heaters converts the oil shale reservoir kerogen into oil, gas and other producible components. This process also enhances the internal energy of the porous media as well as the subsurface fluid. Heat is transmitted in the reservoir within each fluid by different processes <i>i.e. </i>, due to the flow of fluid called advective process, and due to molecular diffusion where dispersive and diffusive processes take place. Heat transfer through conduction and convection mechanisms in the porous media are modeled mathematically and numerically incorporating the advective, dispersive and diffusive processes in the reservoir. The results show the production of oil and gas as a result of conversion of kerogen due to modeled heat dissipation.展开更多
In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybr...In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.展开更多
Oil shale deposit is considered as one of the fossil fuel sources in Jordan. Despite that, the needs of renewable energy resources become a must in Jordan. Wadi Al-Shallala oil shale is investigated in this work for g...Oil shale deposit is considered as one of the fossil fuel sources in Jordan. Despite that, the needs of renewable energy resources become a must in Jordan. Wadi Al-Shallala oil shale is investigated in this work for geochemical, petrographic features and hydrocarbon potential as a conventional energy resource. Various petrographic and geochemical techniques were applied. Oil shale resource potential is evaluated for cooling and heating Sal village houses. Geothermal heat pumps, as renewable energy resource in the study area, were simulated for comparison purposes. Results show that Calcite is the main mineral component of oil shale. Magnesite, Ferrisilicate and Zaherite are exhibited in the studied samples. Other trace elements of Zinc, Cobalt and Molybdenum were presented, too. Calcium oxide of 41.01% and Silicon oxide of 12.4% are the main oxides reflected in this oil shale. Petrographic features of the analyzed oil shale found that the primary mineral constituent is micritic calcite, while the secondary minerals include carbonate mud and opaque minerals. Furthermore, it’s found that total organic carbon averages 3.33% while the total carbon content averages 20.6%. ModerateTOCvalues suggest that Wadi Al-Shallala oil shale has a good source rock potential. Even though nitrogen and sulfur are of low contents in Wadi Al-Shallala oil shale, direct combustion of the reserve for electricity generating will increase CO2 emissions by 2.71 Million m3. Two systems were simulated to cover Sal village cooling and heating demands. The conventional system is compared with geothermal heat pumps. Geothermal heat pumps are found to save 60% of electricity consumption in heating and 50% in cooling systems. The environmental benefits for geothermal system implementation will be a reduction in energy consumption as electricity. The savings in fuel oil will be about 9.35 Million barrels. While the reduction of CO2 emissions will drop to 1.5 Million m3. Results suggest that geothermal heat pumps are the best for satisfying cooling and heating needs in Sal village near Wadi Al-Shallala.展开更多
To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature...To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature is 26oC. Results show that the temperature of the substrate of LEDs reaches 62oC without the fan, however, it reaches only 32oC when the best cooling condition appears. The temperature of the LEDs decreases by 30oC since the heat produced by LEDs is transferred rapidly by the fan. The experiment demonstrates that the cooling system with the fan has good performance.展开更多
In recent years,due to the rapid increase in the number of vehicles in the world,the traditional vehicles using gasoline or diesel as energy have led to serious air pollution and energy depletion.It is urgent to devel...In recent years,due to the rapid increase in the number of vehicles in the world,the traditional vehicles using gasoline or diesel as energy have led to serious air pollution and energy depletion.It is urgent to develop practical clean energy vehicles.The performance of electric vehicle depends on the power battery pack.The working temperature of the battery pack has a great impact on the performance of the battery,so it is necessary to carry out thermal management on the battery pack.Taking a lithium-ion battery as the research object,the temperature field of the battery pack in the charge and discharge state is simulated and analyzed by using CFD simulation software in the way of air cooled heat dissipation,so as to understand the influencing factors of uneven temperature field.At the same time,the development trend of battery temperature can be well predicted through simulation,so as to provide theoretical basis for the design of battery pack.展开更多
The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dr...The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dry cooling system to optimize the thermo-flow characteristics of air-cooled heat exchangers.The entransy dissipation method is applied to the performance optimization of air-cooled heat exchangers in this paper.Two irreversible heat transfer processes in air-cooled heat exchangers,the heat transfer between circulating water and cooling air and the mixing of circulating water,are taken into account and analyzed by means of the entransy dissipation method.The total entransy dissipation rate,which connects the geometrical parameters of air-cooled heat exchanger sectors and the heat capacity rates of the fluids to the heat flow rate in every sector,is obtained.Based on the mathematical relation and the conditional extremum method,an optimization equation group is derived,by which the air-cooled heat exchanger with known air-side parameters is optimized,showing that the entransy dissipation based optimization approach can contribute to the distribution optimization of circulating water in air-cooled heat exchangers of a typical indirect dry cooling system.展开更多
The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti...The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.展开更多
基金This work has been supported by National Key R&D Program of China No.2022YFF0503804.
文摘The Solar Close Observations and Proximity Experiments(SCOPE)mission,which has been proposed by the Yunnan Observatories,Chinese Academy of Sciences,aiming to operate at a distance of 5 to 10 solar radii from the Sun,plans to complete the in situ detection of the solar eruption process and observation of the magnetic field structure response.The solar flux received by the satellite ranges from 10^(3) to 10^(6) Wm^(-2),which poses challenges for thermal management of the solar arrays.In this work,the solar array cooling system of the Parker Solar Probe is discussed,the developments of the fluid loop technique are reviewed,and a research plan for a next-generation solar array cooling system is proposed.This paper provides a valuable reference for novel thermal control systems in spacecraft for solar observation.
基金Project(2018CXNL08) supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.
基金financially supported by the Natural Science Foundation of Hunan Province(Grant No.2021JJ40732)the Central South University Innovation-Driven Research Programme(Grant No.2023CXQD012)。
文摘Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications.
基金supported by the National Natural Science Foundation of China (51907129)Project Supported by Department of Science and Technology of Liaoning Province (2021-MS-236)。
文摘Hybrid excitation synchronous motor has the advantages of uniform and adjustable electromagnetic field, wide speed range and high power density. It has broad application prospects in new energy electric vehicles, wind power generation and other fields. This paper introduces the basic structure of hybrid excitation motor with modular stator, and analyzes the operation principle of hybrid excitation motor. The cooling structure of the water-cooled plate is designed, and the effects of the thickness of the water-cooled plate and the number of water channels in the water-cooled plate on the heat dissipation capacity of the water-cooled plate are analyzed by theoretical and computational fluid dynamics methods. The effects of different water cooling plate structures on water velocity, pressure drop, water pump power consumption and heat dissipation capacity were compared and analyzed. The influence of different inlet flow velocity on the maximum temperature rise of each part of the motor is analyzed, and the temperature of each part of the motor under the optimal water flow is analyzed. The influence of the traditional spiral water jacket cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of the motor components is compared and analyzed. The results show that the water-cooled plate cooling structure is more suitable for the modular stator motor studied in this paper. Based on the water-cooled plate cooling structure, the air-water composite cooling structure is designed, and the effects of the air-water composite cooling structure and the water-cooled plate cooling structure on the maximum temperature rise of each component of the motor are compared and analyzed. The results show that the maximum temperature rise of each component of the motor is reduced under the air-water composite cooling structure.
文摘<i>In-situ</i> conversion of process of oil shale has been technically proven as a pilot field project. Gradually heating the reservoir by using subsurface electric heaters converts the oil shale reservoir kerogen into oil, gas and other producible components. This process also enhances the internal energy of the porous media as well as the subsurface fluid. Heat is transmitted in the reservoir within each fluid by different processes <i>i.e. </i>, due to the flow of fluid called advective process, and due to molecular diffusion where dispersive and diffusive processes take place. Heat transfer through conduction and convection mechanisms in the porous media are modeled mathematically and numerically incorporating the advective, dispersive and diffusive processes in the reservoir. The results show the production of oil and gas as a result of conversion of kerogen due to modeled heat dissipation.
基金Supported by the Ministerial Level Advanced Research Foundation(40402070101)
文摘In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system.
文摘Oil shale deposit is considered as one of the fossil fuel sources in Jordan. Despite that, the needs of renewable energy resources become a must in Jordan. Wadi Al-Shallala oil shale is investigated in this work for geochemical, petrographic features and hydrocarbon potential as a conventional energy resource. Various petrographic and geochemical techniques were applied. Oil shale resource potential is evaluated for cooling and heating Sal village houses. Geothermal heat pumps, as renewable energy resource in the study area, were simulated for comparison purposes. Results show that Calcite is the main mineral component of oil shale. Magnesite, Ferrisilicate and Zaherite are exhibited in the studied samples. Other trace elements of Zinc, Cobalt and Molybdenum were presented, too. Calcium oxide of 41.01% and Silicon oxide of 12.4% are the main oxides reflected in this oil shale. Petrographic features of the analyzed oil shale found that the primary mineral constituent is micritic calcite, while the secondary minerals include carbonate mud and opaque minerals. Furthermore, it’s found that total organic carbon averages 3.33% while the total carbon content averages 20.6%. ModerateTOCvalues suggest that Wadi Al-Shallala oil shale has a good source rock potential. Even though nitrogen and sulfur are of low contents in Wadi Al-Shallala oil shale, direct combustion of the reserve for electricity generating will increase CO2 emissions by 2.71 Million m3. Two systems were simulated to cover Sal village cooling and heating demands. The conventional system is compared with geothermal heat pumps. Geothermal heat pumps are found to save 60% of electricity consumption in heating and 50% in cooling systems. The environmental benefits for geothermal system implementation will be a reduction in energy consumption as electricity. The savings in fuel oil will be about 9.35 Million barrels. While the reduction of CO2 emissions will drop to 1.5 Million m3. Results suggest that geothermal heat pumps are the best for satisfying cooling and heating needs in Sal village near Wadi Al-Shallala.
文摘To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature is 26oC. Results show that the temperature of the substrate of LEDs reaches 62oC without the fan, however, it reaches only 32oC when the best cooling condition appears. The temperature of the LEDs decreases by 30oC since the heat produced by LEDs is transferred rapidly by the fan. The experiment demonstrates that the cooling system with the fan has good performance.
文摘In recent years,due to the rapid increase in the number of vehicles in the world,the traditional vehicles using gasoline or diesel as energy have led to serious air pollution and energy depletion.It is urgent to develop practical clean energy vehicles.The performance of electric vehicle depends on the power battery pack.The working temperature of the battery pack has a great impact on the performance of the battery,so it is necessary to carry out thermal management on the battery pack.Taking a lithium-ion battery as the research object,the temperature field of the battery pack in the charge and discharge state is simulated and analyzed by using CFD simulation software in the way of air cooled heat dissipation,so as to understand the influencing factors of uneven temperature field.At the same time,the development trend of battery temperature can be well predicted through simulation,so as to provide theoretical basis for the design of battery pack.
基金National Natural Science Foundation of China and Shenhua Group Corporation Limited(Grant No.U1261108)The Science and Technology Program of China Huaneng Group(Grant No.HNKJ13-H09)
文摘The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dry cooling system to optimize the thermo-flow characteristics of air-cooled heat exchangers.The entransy dissipation method is applied to the performance optimization of air-cooled heat exchangers in this paper.Two irreversible heat transfer processes in air-cooled heat exchangers,the heat transfer between circulating water and cooling air and the mixing of circulating water,are taken into account and analyzed by means of the entransy dissipation method.The total entransy dissipation rate,which connects the geometrical parameters of air-cooled heat exchanger sectors and the heat capacity rates of the fluids to the heat flow rate in every sector,is obtained.Based on the mathematical relation and the conditional extremum method,an optimization equation group is derived,by which the air-cooled heat exchanger with known air-side parameters is optimized,showing that the entransy dissipation based optimization approach can contribute to the distribution optimization of circulating water in air-cooled heat exchangers of a typical indirect dry cooling system.
基金This study is financially supported by the National Natural Science Foundation of China(42072181).
文摘The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity.