As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por...Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.展开更多
Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability r...Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability reservoir in heterogeneous reservoir. According to the core flooding experiment analyzed longitudinal heterogeneous models, single surfactant and a single polymer and polymer flooding of table binary complex drive effect. Studies show that binary combination flooding recovery effect is best, followed by polymer flooding, minimum of surfactant flooding, in heterogeneous reservoir.展开更多
Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in a...Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in arid and semiarid areas. Supplemental irrigation would still be needed to achieve a higher production. Field experiments were conducted for two growing seasons (2012-2013 and 2013-2014)to determine an appropriate amount of supplemental irrigation to be applied to winter oilseed rape at the stem-elongation stage with RFRH planting pattern. Four treatments, including supplemental irrigation amount of 0 (I1), 60 mm (I2) and 120 mm (I3) with RFRH planting pattern and a control (CK) irrigated with 120 mm with flat planting pattern, were set up to evaluate the effects of supplemental irrigation on aboveground dry matter (ADM), nitrogen nutrition index (NNI), radiation use efficiency (RUE), water use efficiency (WUE), and seed yield and oil content of the oilseed rape. Results showed that supplemental irrigation improved NNI, RUE, seed yield and oil content, and WUE. However, the NNI, RUE, seed yield and oil content, and WUE did not increase significantly or even showed a downward trend with excessive irrigation. Seed yield was the highest in 13 for both growing seasons. Seed yield and WUE in 13 averaged 3235 kg ha^-1 and 8.85 kg ha^-1 mm-1, respectively. The highest WUE was occurred in 12 for both growing seasons. Seed yield and WUE in 12 averaged 3089 kg ha^-1 and 9.63 kg ha^-1 mm^-1, respectively. Compared to 13, 12 used 60 mm less irrigation amount, had an 8.9% higher WUE, but only 4.5 and 0.4% lower seed yield and oil content, respectively. 12 saved water without substantially sacrificing yield or oil content, so it is recommended as an appropriate cultivation and irrigation schedule for winter oilseed rape at the stem-elongation stage.展开更多
Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and ...Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion effi...The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion efficiency and roof/floor sealing conditions of the Chang 7_(3) shale,and evaluates the major enrichment type of shale oil in this interval.The average organic matter transformation ratio of the Chang 7_(3) shale is about 45%;in other words,more than 50%of the organic matters have not transformed to hydrocarbons,and the lower the maturity,the greater the proportion of untransformed organic matters.The cumulative hydrocarbon expulsion efficiency of the transformed hydrocarbon is 27.5% on average,and the total proportion of untransformed organic matters plus retained hydrocarbons is greater than 70%.The relative hydrocarbon expulsion efficiency of the Chang 7_(3) shale is 60%on average,that is,about 40% of hydrocarbons retain in the shale.The Chang 7_(3) shale corresponds to Chang 7_(1+2) and Chang 8 sandstones as the roof and floor,respectively,and is further overlaid by Chang 6 shale,where extensive low porosity and low permeability–tight oil reservoirs have formed in the parts with relatively good porosity and permeability.Moreover,the Chang 7_(3) shale is tested to be in a negative pressure system(the pressure coefficient of 0.80–0.85).Therefore,the roof/floor sealing conditions of the Chang 7_(3) shale are poor.The retained hydrocarbons appear mostly in absorbed status,with low mobility.It is concluded that the medium–high mature shale oil is not the major enrichment type of shale oil in the Chang 7_(3) shale,but there may be enrichment opportunity for shale oil with good mobility in the areas where the sealing conditions are good without faults and fractures and oil reservoirs are formed off Chang 7_(1+2),Chang 6 and Chang 8.Furthermore,low–medium mature shale oil is believed to have great potential and is the major enrichment type of shale oil in the Chang 7_(3) shale.It is recommended to prepare relevant in-situ conversion technologies by pilot test and figure out the resource availability and distribution.展开更多
Two field experiments were carried out during growing seasons 2010 and 2011, it executed in research farm of national research center in Nubaryia region, Egypt to study the effect of pulse drip irrigation and mulching...Two field experiments were carried out during growing seasons 2010 and 2011, it executed in research farm of national research center in Nubaryia region, Egypt to study the effect of pulse drip irrigation and mulching systems for saving water, increasing and improving yield of soybean. The study factors were, pulse drip irrigation technology (adding of daily water requirements on 4 times, 8 times, 12 times compared with adding of daily water requirements on 1 time) and mulching systems (covering the soil with black plastic mulch “BPM”, rice straw mulch “RSM” and the control treatment was soil surface without mulch “WM”). The following parameters were studied to evaluate the effect of pulse drip irrigation and mulching systems: 1) Soil moisture distribution in root zone, 2) Growth characters of soybean plant, 3) Yield of soybean, 4) Irrigation water use efficiency of soybean “IWUE soybean”, and 5) Oil content and oil yield, 6) Protein content and protein yield, 7) Economical parameter. According to the economical view and the results of statistical analysis for effect of pulse drip irrigation and mulching systems on yield, quality traits and IWUE soybean indicated that, applying the irrigation requirements on 8 pulses/day with using BPM is the best conditions because under these conditions was occurred the highest value of yield, quality traits and IWUE soybean and there was significant deference between this case and other treatments. Where, pulse irrigation technique increase from water movement in horizontal direction than vertical direction hence improve from soil moisture distribution and wetted soil volume in root zone and using BPM decrease from evaporation process rate from soil surface hence decreasing of salts accumulation in addition to decreasing of weed growth in the root zone. All traits at AIR on 12 pulses/ day are decreased by increasing of pulses, this may be due to irrigation water was very small with every pulse at AIR on 12 pulses/day in addition increasing the total time of time-off, this mean, un-sufficient application for irrigation water to remove water stress in the root zone.展开更多
The current palm oil harvesting process removes the whole fruit bunch from the palm with most of the fruit unripe, and takes the whole fruit bunch from the plantation to a processing mill. There are two consequences. ...The current palm oil harvesting process removes the whole fruit bunch from the palm with most of the fruit unripe, and takes the whole fruit bunch from the plantation to a processing mill. There are two consequences. This robs the symbiotic palm/soil eco-system of important nutrients and steadily reduces soil fertility. Poor soil fertility is now the limit to palm oil production in peninsular Malaysia despite much use of expensive fertiliser, and weak palms in unhealthy soil are prone to the fungus Ganoderma. Secondly, it takes much energy to remove the fruit from the bunch and the quantity and quality of the oil is less than that of ripe fruit. All this is because ripe fruit—which naturally becomes loose—has been defined as “a problem” in harvesting. This paper proposes covering the fruit bunch in a mesh sack whilst ripening, which prevents ripe fruit naturally from becoming loose being a problem and transforms the whole harvesting process. This allows efficient fruit separation and fruit pressing to be done at the foot of the palm tree with only the oil being removed from the plantation, both simplifying and improving the harvesting process and maintaining the organic fertility cycle, adding value in every respect.展开更多
Material efficiency is nowadays an essential topic to promote the sustainable use of natural resources, waste materials and industrial by-products, in agreement with the principle of sustainable development and LCA (l...Material efficiency is nowadays an essential topic to promote the sustainable use of natural resources, waste materials and industrial by-products, in agreement with the principle of sustainable development and LCA (life cycle assessment). In this research it was determined the biodegradation of used vegetable oil based products and their important physico- chemical properties for their suitability in different applications such as chain oil in the forestry equipment and mold oil in concrete casting etc. Biodegradability is a measure of the ecological nature of products, and thus from an environ- mental point of view, is the most important evaluated property in this research. As a result, all measured properties of the studied recycled vegetable oils show that the products are environmentally friendly. Two types of vegetable oil were studied;three chain oils and two mold oils. The degree of biodegradation (BOD28) of the mold oils, was about 77 % and the biodegradation of chain oils was about 60% - 62%. In addition, this paper also presents a process outline for manu- facturing recycling vegetable oils.展开更多
Jatropha curcas oil is one of the most promising renewable energy sources for rural areas due to its ease of production, which can be used as an alternative to diesel and fuel oil. The development of sustainable energ...Jatropha curcas oil is one of the most promising renewable energy sources for rural areas due to its ease of production, which can be used as an alternative to diesel and fuel oil. The development of sustainable energy has been the issue of the discussion about biofuel production given the considerable consumption amount of fossil fuel during the transformation process. And any production process that consumes a lot of energy records a significant destruction of useful energy, which leads to thermodynamic inefficiencies of the process. Besides, the focus on environmental safety is gradually shifting towards energy efficiency in industrial processing. Exergetic analysis is an effective tool for measuring the performance of a production process since exergy is a quantity that measures energy quality. This study assesses the scale of resource degradation in Jatropha oil mechanical extraction processes and finds improving possible pretreatments options for more efficient production. Data from experiments combined with existing databases have permitted to establish the exergy flow balance at each stage of production. The process exergetic yield varies from 29.85% to 35.41% according to the chosen pretreatment process. Mass exergy accounts for 67% of incoming flows and, for outgoing flows, more than 60% is associated with the mass exergy generated by the process waste. The uncertainties analysis on the results was used to validate model results, and to visualize the minimum values for the most unfavorable cases and the maximum values when all the parameters are at their optimum values.展开更多
Laboratory experiments,numerical simulations and fracturing technology were combined to address the problems in shale oil recovery by CO_(2)injection.The laboratory experiments were conducted to investigate the displa...Laboratory experiments,numerical simulations and fracturing technology were combined to address the problems in shale oil recovery by CO_(2)injection.The laboratory experiments were conducted to investigate the displacement mechanisms of shale oil extraction by CO_(2)injection,and the influences of CO_(2)pre-pad on shale mechanical properties.Numerical simulations were performed about influences of CO_(2)pre-pad fracturing and puff-n-huff for energy replenishment on the recovery efficiency.The findings obtained were applied to the field tests of CO_(2)pre-pad fracturing and single well puff-n-huff.The results show that the efficiency of CO_(2)puff-n-huff is affected by micro-and nano-scale effect,kerogen,adsorbed oil and so on,and a longer soaking time in a reasonable range leads to a higher exploitation degree of shale oil.In the"injection+soaking"stage,the exploitation degree of heavy hydrocarbons is enhanced by CO_(2)through its effects of solubility-diffusion and mass-transfer.In the"huff"stage,crude oil in large pores is displaced by CO_(2)to surrounding larger pores or bedding fractures and finally flows to the production well.The injection of CO_(2)pre-pad is conducive to keeping the rock brittle and reducing the fracture breakdown pressure,and the CO_(2)is liable to filter along the bedding surface,thereby creating a more complex fracture.Increasing the volume of CO_(2)pre-pad can improve the energizing effect,and enhance the replenishment of formation energy.Moreover,the oil recovery is more enhanced by CO_(2)huff-n-puff with the lower shale matrix permeability,the lower formation pressure,and the larger heavy hydrocarbon content.The field tests demonstrate a good performance with the pressure maintained well after CO_(2)pre-pad fracturing,the formation energy replenished effectively after CO_(2)huff-n-puff in a single well,and the well productivity improved.展开更多
Background:Dietary essential oil(EO)supplementation can exert favorable effects on gut health in broilers.However,it is unknown whether EO could improve intestinal functions,consequently beneficial for egg performance...Background:Dietary essential oil(EO)supplementation can exert favorable effects on gut health in broilers.However,it is unknown whether EO could improve intestinal functions,consequently beneficial for egg performance and quality in late-phase laying hens.This study was aimed to investigate the potential effects of EO on production performance,egg quality,intestinal health and ileal microbiota of hens in the late phase of production.A total of 28860-week-old Hy-line Brown laying hens were randomly divided into 4 groups and fed a basal diet(control)or basal diets supplemented with oregano EO at 100,200 and 400 mg/kg(EO100,EO200 and EO400).Results:Dietary EO supplementation resulted in a quadratic decrease(P<0.05)in feed conversion ratio with lower(P<0.05)feed conversion ratio in EO200 group than the control during weeks 9–12 and 1–12 of the trial.Compared to the control,EO addition resulted in higher(P<0.05)eggshell thickness at the end of week.4,8 and 12 and higher(P<0.05)chymotrypsin activity.There was a quadratic elevation(P<0.05)in ileal chymotrypsin and lipase activity,along with a linear increase in villus height to crypt depth ratio.Quadratic declines(P<0.05)in mRNA expression of IL-1β,TNF-α,IFN-γ and TLR-4,concurrent with a linear and quadratic increase(P<0.05)in ZO-1 expression were identified in the ileum with EO addition.These favorable effects were maximized at medium dosage(200 mg/kg)of EO addition and intestinal microbial composition in the control and EO200 groups were assessed.Dietary EO addition increased(P<0.05)the abundances of Burkholderiales,Actinobacteria,Bifidobacteriales,Enterococcaceae and Bacillaceae,whereas decreased Shigella abundance in the ileum.Conclusions:Dietary EO addition could enhance digestive enzyme activity,improve gut morphology,epithelial barrier functions and modulate mucosal immune status by altering microbial composition,thus favoring feed efficiency and eggshell quality of late-phase laying hens.展开更多
The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. Th...The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of 1.0 h, the air/water volume flow ratio of about 5 : 1 and the backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5 mg·L^-1, respectively. The experimental results demonstrated that the BAF process is a suitable and highly efficient method to treat the wastewater.展开更多
The parameters such as pore size distribution,specific surface area and pore volume of shale rock samples are analyzed by low-temperature nitrogen adsorption experiment,and then the conversion coefficient between rela...The parameters such as pore size distribution,specific surface area and pore volume of shale rock samples are analyzed by low-temperature nitrogen adsorption experiment,and then the conversion coefficient between relaxation time(T_(2))and pore size is calibrated.Nuclear magnetic resonance experiments of CO_(2)huff and puff in shale samples are carried out to study the effects of gas injection pressure,soaking time and fractures on the oil production characteristics of shale pores from the micro scale.The recovery degrees of small pores(less than or equal to 50 nm)and large pores(greater than 50 nm)are quantitatively evaluated.The experimental results show that the recovery degree of crude oil in large pores increases rapidly with the increase of injection pressure under immiscible conditions,and the effect of injection pressure rise on recovery degree of large pores decreases under miscible conditions;whether miscible or not,the recovery degree of crude oil in small pores basically maintains a linear increase with the increase of injection pressure,and the lower size limit of pores in which oil can be recovered by CO_(2)decreases with the increase of gas injection pressure;with the increase of soaking time,the recovery degree of crude oil in large pores increases slowly gradually,while the recovery degree of crude oil in small pores increases faster and then decelerates,and the best soaking time in the experiments is about 10 h;the existence of fractures can enhance the recovery degrees of crude oil in small pores and large pores noticeably.展开更多
The autothermic pyrolysis in-situ conversion process (ATS) consumes latent heat of residual organic matter after kerogen pyrolysis by oxidation reaction, and it has the advantages of low development cost and exploitat...The autothermic pyrolysis in-situ conversion process (ATS) consumes latent heat of residual organic matter after kerogen pyrolysis by oxidation reaction, and it has the advantages of low development cost and exploitation of deep oil shale resources. However, the heating mechanism and the characteristic of different reaction zones are still unclear. In this study, an ATS numerical simulation model was proposed for the development of oil shale, which considers the pyrolysis of kerogen, high-temperature oxidation, and low-temperature oxidation. Based on the above model, the mechanism of the ATS was analyzed and the effects of preheating temperature, O_(2) content, and injection rate on recovery factor and energy efficiency were studied. The results showed that the ATS in the formation can be divided into five characteristic zones by evolution of the oil and O_(2) distribution, and the solid organic matter, including residue zone, autothermic zone, pyrolysis zone, preheating zone, and original zone. Energy efficiency was much higher for the ATS than for the high-temperature nitrogen injection in-situ conversion process (HNICP). There is a threshold value of the preheating temperature, the oil content, and the injection rate during the ATS, which is 400 °C, 0.18, and 1100 m3/day, respectively, in this study.展开更多
ASP-foam (ASPF) is a system prepared by injecting natural gas into the conventional alkali- surfactant-polymer (ASP) system. Foam can be formed in the porous media by the interaction of gas and surfactant in the A...ASP-foam (ASPF) is a system prepared by injecting natural gas into the conventional alkali- surfactant-polymer (ASP) system. Foam can be formed in the porous media by the interaction of gas and surfactant in the ASP system. With the ASPF system, oil recovery is improved as the interfacial tension (IFT) is reduced to a relatively low level, and the swept volume is enlarged. In this paper, four surfactants were evaluated and characterized by IFT between ASP system and oil and the foaming performance. AI- kyl benzene sulfonate (ORS-41) was chosen as the surfactant to best reduce IFT between displacement fluids and oil and improve the foaming performance. The mechanisms of ASPF flooding were studied in this paper, the results show that the ASPF flooding not only enlarges the swept volume but also enhances the displacement efficiency. The effects of reservoir heterogeneity, the gas-liquid ratio of ASPF system, and the concentrations of polymer and surfactant on the displacement efficiency were studied. A field trial of ASPF flooding has also been conducted. Both the laboratory results and the field trial results show that the ASPF flooding can significantly increase the oil recovery, with a 30% increase in the proportion of the original oil in place recovered compared with water flooding.展开更多
It is a challenge to conserve energy for the large-scale petrochemical enterprises due to complex production process and energy diversification. As critical energy consumption equipment of atmospheric distillation oil...It is a challenge to conserve energy for the large-scale petrochemical enterprises due to complex production process and energy diversification. As critical energy consumption equipment of atmospheric distillation oil refining process, the atmospheric distillation column is paid more attention to save energy. In this paper, the optimal problem of energy utilization efficiency of the atmospheric distillation column is solved by defining a new energy efficiency indicator - the distillation yield rate of unit energy consumption from the perspective of material flow and energy flow, and a soft-sensing model for this new energy efficiency indicator with respect to the multiple working conditions and intelligent optimizing control strategy are suggested for both increasing distillation yield and decreasing energy consumption in oil refining process. It is found that the energy utilization efficiency level of the atmospheric distillation column depends closely on the typical working conditions of the oil refining process, which result by changing the outlet temperature, the overhead temperature, and the bottom liquid level of the atmospheric pressure tower. The fuzzy C-means algorithm is used to classify the typical operation conditions of atmospheric distillation in oil refining process. Furthermore, the LSSVM method optimized with the improved particle swarm optimization is used to model the distillation rate of unit energy consumption. Then online optimization of oil refining process is realized by optimizing the outlet temperature, the overhead temperature with IPSO again. Simulation comparative analyses are made by empirical data to verify the effectiveness of the proposed solution.展开更多
Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield....Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield.The experimental results show that the surface-active polymer is different from other common polymers and polymer-surfactant systems in molecular aggregation,viscosity and flow capacity,and it has larger molecular coil size,higher viscosity and viscosifying capacity,and poorer mobility.The surface-active polymer solution has good performance of viscosity-increasing and viscosity retention,and has good performance of viscoelasticity and deformability to exert positive effects of viscosifying and viscoelastic properties.Surface-active polymer can change the chemical property of interface and reduce interfacial tension,making the reservoir rock turn water-wet,also it can emulsify the oil into relatively stable oil-in-water emulsion,and emulsification capacity is an important property to enhance oil washing efficiency under non-ultralow interfacial tension.The surface-active polymer flooding enlarges swept volume in two ways:Microscopically,the surface-active polymer has mobility control effect and can enter oil-bearing pores not swept by water to drive residual oil,and its mobility control effect has more contribution than oil washing capacity in enhancing oil recovery.Macroscopically,it has plugging capacity,and can emulsify and plug the dominant channels in layers with high permeability,forcing the injected fluid to enter the layer with medium or low permeability and low flow resistance,and thus enlarging swept volume.展开更多
Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and ...Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and possible potential for heavy oil reservoirs.However,the addition of polymer may cause problems with injection in the case of highly viscous oil.Hence,in this study the feasibility of alkali-cosolvent(AC)flooding in heavy oil reservoirs was investigated via several groups of experiments.The interfacial tension between various AC formulations and heavy crude oil was measured to select appropriate formulations.Phase behavior tests were performed to determine the most appropriate formulation and conditions for the generation of a microemulsion.Sandpack flooding experiments were carried out to investigate the displacement efficiency of the selected Ac formulation.The results showed that the interfacial tension between an AC formulation and heavy oil could be reduced to below 1o-3 mN/m but differed greatly between different types of cosolvent.A butanol random polyether series displayed good performance in reducing the water-oil interfacial tension,which made it possible to form a Type Il microemulsion in reservoir conditions.According to the results of the phase behavior tests,the optimal salinity for different formulations with four cosolvent concentrations(0.5 wt%,1 wt%,2 wt%,and 3 wt%)was 4000,8000,14000,and 20000 ppm,respectively.The results of rheological measurements showed that Type Ill microemulsion had a viscosity that was ten times that of water.The results of sandpack flooding experiments showed that,in comparison with waterflooding,the injection of a certain Ac formulation slug could reduce the injection pressure.The pressure gradient during waterflooding and AC flooding was around 870 and 30-57 kPa/m,respectively.With the addition of an AC slug,the displacement efficiency was 30%-50%higher than in the case of waterflooding.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
文摘Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection.
文摘Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability reservoir in heterogeneous reservoir. According to the core flooding experiment analyzed longitudinal heterogeneous models, single surfactant and a single polymer and polymer flooding of table binary complex drive effect. Studies show that binary combination flooding recovery effect is best, followed by polymer flooding, minimum of surfactant flooding, in heterogeneous reservoir.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest,China(201503105 and 201503125)the National High-Tech R&D Program of China(863 Program,2011AA100504)
文摘Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in arid and semiarid areas. Supplemental irrigation would still be needed to achieve a higher production. Field experiments were conducted for two growing seasons (2012-2013 and 2013-2014)to determine an appropriate amount of supplemental irrigation to be applied to winter oilseed rape at the stem-elongation stage with RFRH planting pattern. Four treatments, including supplemental irrigation amount of 0 (I1), 60 mm (I2) and 120 mm (I3) with RFRH planting pattern and a control (CK) irrigated with 120 mm with flat planting pattern, were set up to evaluate the effects of supplemental irrigation on aboveground dry matter (ADM), nitrogen nutrition index (NNI), radiation use efficiency (RUE), water use efficiency (WUE), and seed yield and oil content of the oilseed rape. Results showed that supplemental irrigation improved NNI, RUE, seed yield and oil content, and WUE. However, the NNI, RUE, seed yield and oil content, and WUE did not increase significantly or even showed a downward trend with excessive irrigation. Seed yield was the highest in 13 for both growing seasons. Seed yield and WUE in 13 averaged 3235 kg ha^-1 and 8.85 kg ha^-1 mm-1, respectively. The highest WUE was occurred in 12 for both growing seasons. Seed yield and WUE in 12 averaged 3089 kg ha^-1 and 9.63 kg ha^-1 mm^-1, respectively. Compared to 13, 12 used 60 mm less irrigation amount, had an 8.9% higher WUE, but only 4.5 and 0.4% lower seed yield and oil content, respectively. 12 saved water without substantially sacrificing yield or oil content, so it is recommended as an appropriate cultivation and irrigation schedule for winter oilseed rape at the stem-elongation stage.
基金financially supported by the National Natural Science Foundation of China(U20B6003,52004303)Beijing Natural Science Foundation(3212020)
文摘Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
基金Supported by the National Natural Science Foundation of China(U22B6004).
文摘The major enrichment type of shale oil in the Chang 7_(3) shale of Upper Triassic Yanchang Formation in the Ordos Basin is unknown.This paper analyzes the organic matter transformation ratio,hydrocarbon expulsion efficiency and roof/floor sealing conditions of the Chang 7_(3) shale,and evaluates the major enrichment type of shale oil in this interval.The average organic matter transformation ratio of the Chang 7_(3) shale is about 45%;in other words,more than 50%of the organic matters have not transformed to hydrocarbons,and the lower the maturity,the greater the proportion of untransformed organic matters.The cumulative hydrocarbon expulsion efficiency of the transformed hydrocarbon is 27.5% on average,and the total proportion of untransformed organic matters plus retained hydrocarbons is greater than 70%.The relative hydrocarbon expulsion efficiency of the Chang 7_(3) shale is 60%on average,that is,about 40% of hydrocarbons retain in the shale.The Chang 7_(3) shale corresponds to Chang 7_(1+2) and Chang 8 sandstones as the roof and floor,respectively,and is further overlaid by Chang 6 shale,where extensive low porosity and low permeability–tight oil reservoirs have formed in the parts with relatively good porosity and permeability.Moreover,the Chang 7_(3) shale is tested to be in a negative pressure system(the pressure coefficient of 0.80–0.85).Therefore,the roof/floor sealing conditions of the Chang 7_(3) shale are poor.The retained hydrocarbons appear mostly in absorbed status,with low mobility.It is concluded that the medium–high mature shale oil is not the major enrichment type of shale oil in the Chang 7_(3) shale,but there may be enrichment opportunity for shale oil with good mobility in the areas where the sealing conditions are good without faults and fractures and oil reservoirs are formed off Chang 7_(1+2),Chang 6 and Chang 8.Furthermore,low–medium mature shale oil is believed to have great potential and is the major enrichment type of shale oil in the Chang 7_(3) shale.It is recommended to prepare relevant in-situ conversion technologies by pilot test and figure out the resource availability and distribution.
文摘Two field experiments were carried out during growing seasons 2010 and 2011, it executed in research farm of national research center in Nubaryia region, Egypt to study the effect of pulse drip irrigation and mulching systems for saving water, increasing and improving yield of soybean. The study factors were, pulse drip irrigation technology (adding of daily water requirements on 4 times, 8 times, 12 times compared with adding of daily water requirements on 1 time) and mulching systems (covering the soil with black plastic mulch “BPM”, rice straw mulch “RSM” and the control treatment was soil surface without mulch “WM”). The following parameters were studied to evaluate the effect of pulse drip irrigation and mulching systems: 1) Soil moisture distribution in root zone, 2) Growth characters of soybean plant, 3) Yield of soybean, 4) Irrigation water use efficiency of soybean “IWUE soybean”, and 5) Oil content and oil yield, 6) Protein content and protein yield, 7) Economical parameter. According to the economical view and the results of statistical analysis for effect of pulse drip irrigation and mulching systems on yield, quality traits and IWUE soybean indicated that, applying the irrigation requirements on 8 pulses/day with using BPM is the best conditions because under these conditions was occurred the highest value of yield, quality traits and IWUE soybean and there was significant deference between this case and other treatments. Where, pulse irrigation technique increase from water movement in horizontal direction than vertical direction hence improve from soil moisture distribution and wetted soil volume in root zone and using BPM decrease from evaporation process rate from soil surface hence decreasing of salts accumulation in addition to decreasing of weed growth in the root zone. All traits at AIR on 12 pulses/ day are decreased by increasing of pulses, this may be due to irrigation water was very small with every pulse at AIR on 12 pulses/day in addition increasing the total time of time-off, this mean, un-sufficient application for irrigation water to remove water stress in the root zone.
文摘The current palm oil harvesting process removes the whole fruit bunch from the palm with most of the fruit unripe, and takes the whole fruit bunch from the plantation to a processing mill. There are two consequences. This robs the symbiotic palm/soil eco-system of important nutrients and steadily reduces soil fertility. Poor soil fertility is now the limit to palm oil production in peninsular Malaysia despite much use of expensive fertiliser, and weak palms in unhealthy soil are prone to the fungus Ganoderma. Secondly, it takes much energy to remove the fruit from the bunch and the quantity and quality of the oil is less than that of ripe fruit. All this is because ripe fruit—which naturally becomes loose—has been defined as “a problem” in harvesting. This paper proposes covering the fruit bunch in a mesh sack whilst ripening, which prevents ripe fruit naturally from becoming loose being a problem and transforms the whole harvesting process. This allows efficient fruit separation and fruit pressing to be done at the foot of the palm tree with only the oil being removed from the plantation, both simplifying and improving the harvesting process and maintaining the organic fertility cycle, adding value in every respect.
文摘Material efficiency is nowadays an essential topic to promote the sustainable use of natural resources, waste materials and industrial by-products, in agreement with the principle of sustainable development and LCA (life cycle assessment). In this research it was determined the biodegradation of used vegetable oil based products and their important physico- chemical properties for their suitability in different applications such as chain oil in the forestry equipment and mold oil in concrete casting etc. Biodegradability is a measure of the ecological nature of products, and thus from an environ- mental point of view, is the most important evaluated property in this research. As a result, all measured properties of the studied recycled vegetable oils show that the products are environmentally friendly. Two types of vegetable oil were studied;three chain oils and two mold oils. The degree of biodegradation (BOD28) of the mold oils, was about 77 % and the biodegradation of chain oils was about 60% - 62%. In addition, this paper also presents a process outline for manu- facturing recycling vegetable oils.
文摘Jatropha curcas oil is one of the most promising renewable energy sources for rural areas due to its ease of production, which can be used as an alternative to diesel and fuel oil. The development of sustainable energy has been the issue of the discussion about biofuel production given the considerable consumption amount of fossil fuel during the transformation process. And any production process that consumes a lot of energy records a significant destruction of useful energy, which leads to thermodynamic inefficiencies of the process. Besides, the focus on environmental safety is gradually shifting towards energy efficiency in industrial processing. Exergetic analysis is an effective tool for measuring the performance of a production process since exergy is a quantity that measures energy quality. This study assesses the scale of resource degradation in Jatropha oil mechanical extraction processes and finds improving possible pretreatments options for more efficient production. Data from experiments combined with existing databases have permitted to establish the exergy flow balance at each stage of production. The process exergetic yield varies from 29.85% to 35.41% according to the chosen pretreatment process. Mass exergy accounts for 67% of incoming flows and, for outgoing flows, more than 60% is associated with the mass exergy generated by the process waste. The uncertainties analysis on the results was used to validate model results, and to visualize the minimum values for the most unfavorable cases and the maximum values when all the parameters are at their optimum values.
基金Supported by Basic and Forward-Looking Project of the Science and Technology Department of SINOPEC(P22213-4)。
文摘Laboratory experiments,numerical simulations and fracturing technology were combined to address the problems in shale oil recovery by CO_(2)injection.The laboratory experiments were conducted to investigate the displacement mechanisms of shale oil extraction by CO_(2)injection,and the influences of CO_(2)pre-pad on shale mechanical properties.Numerical simulations were performed about influences of CO_(2)pre-pad fracturing and puff-n-huff for energy replenishment on the recovery efficiency.The findings obtained were applied to the field tests of CO_(2)pre-pad fracturing and single well puff-n-huff.The results show that the efficiency of CO_(2)puff-n-huff is affected by micro-and nano-scale effect,kerogen,adsorbed oil and so on,and a longer soaking time in a reasonable range leads to a higher exploitation degree of shale oil.In the"injection+soaking"stage,the exploitation degree of heavy hydrocarbons is enhanced by CO_(2)through its effects of solubility-diffusion and mass-transfer.In the"huff"stage,crude oil in large pores is displaced by CO_(2)to surrounding larger pores or bedding fractures and finally flows to the production well.The injection of CO_(2)pre-pad is conducive to keeping the rock brittle and reducing the fracture breakdown pressure,and the CO_(2)is liable to filter along the bedding surface,thereby creating a more complex fracture.Increasing the volume of CO_(2)pre-pad can improve the energizing effect,and enhance the replenishment of formation energy.Moreover,the oil recovery is more enhanced by CO_(2)huff-n-puff with the lower shale matrix permeability,the lower formation pressure,and the larger heavy hydrocarbon content.The field tests demonstrate a good performance with the pressure maintained well after CO_(2)pre-pad fracturing,the formation energy replenished effectively after CO_(2)huff-n-puff in a single well,and the well productivity improved.
基金supported by Shandong Key Science and Technology Innovation Program(2019JZZY010704)China Agriculture Research System(CARS-40-K12)+1 种基金Beijing Innovation Consortium of Agriculture Research System(BAIC04-2020)Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences.
文摘Background:Dietary essential oil(EO)supplementation can exert favorable effects on gut health in broilers.However,it is unknown whether EO could improve intestinal functions,consequently beneficial for egg performance and quality in late-phase laying hens.This study was aimed to investigate the potential effects of EO on production performance,egg quality,intestinal health and ileal microbiota of hens in the late phase of production.A total of 28860-week-old Hy-line Brown laying hens were randomly divided into 4 groups and fed a basal diet(control)or basal diets supplemented with oregano EO at 100,200 and 400 mg/kg(EO100,EO200 and EO400).Results:Dietary EO supplementation resulted in a quadratic decrease(P<0.05)in feed conversion ratio with lower(P<0.05)feed conversion ratio in EO200 group than the control during weeks 9–12 and 1–12 of the trial.Compared to the control,EO addition resulted in higher(P<0.05)eggshell thickness at the end of week.4,8 and 12 and higher(P<0.05)chymotrypsin activity.There was a quadratic elevation(P<0.05)in ileal chymotrypsin and lipase activity,along with a linear increase in villus height to crypt depth ratio.Quadratic declines(P<0.05)in mRNA expression of IL-1β,TNF-α,IFN-γ and TLR-4,concurrent with a linear and quadratic increase(P<0.05)in ZO-1 expression were identified in the ileum with EO addition.These favorable effects were maximized at medium dosage(200 mg/kg)of EO addition and intestinal microbial composition in the control and EO200 groups were assessed.Dietary EO addition increased(P<0.05)the abundances of Burkholderiales,Actinobacteria,Bifidobacteriales,Enterococcaceae and Bacillaceae,whereas decreased Shigella abundance in the ileum.Conclusions:Dietary EO addition could enhance digestive enzyme activity,improve gut morphology,epithelial barrier functions and modulate mucosal immune status by altering microbial composition,thus favoring feed efficiency and eggshell quality of late-phase laying hens.
基金Supported by the Foundation of Science and Technology Project of Guangdong Province (2004B33301001)
文摘The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of 1.0 h, the air/water volume flow ratio of about 5 : 1 and the backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5 mg·L^-1, respectively. The experimental results demonstrated that the BAF process is a suitable and highly efficient method to treat the wastewater.
基金Supported by the National Natural Science Foundation of China Youth Project(52004221)National Natural Science Foundation of China Project(5207042143)Shaanxi Provincial Department of Education Scientific Research Project(21JY034)。
文摘The parameters such as pore size distribution,specific surface area and pore volume of shale rock samples are analyzed by low-temperature nitrogen adsorption experiment,and then the conversion coefficient between relaxation time(T_(2))and pore size is calibrated.Nuclear magnetic resonance experiments of CO_(2)huff and puff in shale samples are carried out to study the effects of gas injection pressure,soaking time and fractures on the oil production characteristics of shale pores from the micro scale.The recovery degrees of small pores(less than or equal to 50 nm)and large pores(greater than 50 nm)are quantitatively evaluated.The experimental results show that the recovery degree of crude oil in large pores increases rapidly with the increase of injection pressure under immiscible conditions,and the effect of injection pressure rise on recovery degree of large pores decreases under miscible conditions;whether miscible or not,the recovery degree of crude oil in small pores basically maintains a linear increase with the increase of injection pressure,and the lower size limit of pores in which oil can be recovered by CO_(2)decreases with the increase of gas injection pressure;with the increase of soaking time,the recovery degree of crude oil in large pores increases slowly gradually,while the recovery degree of crude oil in small pores increases faster and then decelerates,and the best soaking time in the experiments is about 10 h;the existence of fractures can enhance the recovery degrees of crude oil in small pores and large pores noticeably.
基金financial support offered by the National Key R&D Program of China(Grant No.2019YFA0705502,Grant No.2019YFA0705501)the National Natural Science Fund Project of China(Grant No.4210020395)+1 种基金the China Postdoctoral Science Foundation(Grant No.2021M700053)Technology Development Plan Project of Jilin Province(Grant No.20200201219JC).
文摘The autothermic pyrolysis in-situ conversion process (ATS) consumes latent heat of residual organic matter after kerogen pyrolysis by oxidation reaction, and it has the advantages of low development cost and exploitation of deep oil shale resources. However, the heating mechanism and the characteristic of different reaction zones are still unclear. In this study, an ATS numerical simulation model was proposed for the development of oil shale, which considers the pyrolysis of kerogen, high-temperature oxidation, and low-temperature oxidation. Based on the above model, the mechanism of the ATS was analyzed and the effects of preheating temperature, O_(2) content, and injection rate on recovery factor and energy efficiency were studied. The results showed that the ATS in the formation can be divided into five characteristic zones by evolution of the oil and O_(2) distribution, and the solid organic matter, including residue zone, autothermic zone, pyrolysis zone, preheating zone, and original zone. Energy efficiency was much higher for the ATS than for the high-temperature nitrogen injection in-situ conversion process (HNICP). There is a threshold value of the preheating temperature, the oil content, and the injection rate during the ATS, which is 400 °C, 0.18, and 1100 m3/day, respectively, in this study.
基金supported by the Daqing Oilfield Limited Company
文摘ASP-foam (ASPF) is a system prepared by injecting natural gas into the conventional alkali- surfactant-polymer (ASP) system. Foam can be formed in the porous media by the interaction of gas and surfactant in the ASP system. With the ASPF system, oil recovery is improved as the interfacial tension (IFT) is reduced to a relatively low level, and the swept volume is enlarged. In this paper, four surfactants were evaluated and characterized by IFT between ASP system and oil and the foaming performance. AI- kyl benzene sulfonate (ORS-41) was chosen as the surfactant to best reduce IFT between displacement fluids and oil and improve the foaming performance. The mechanisms of ASPF flooding were studied in this paper, the results show that the ASPF flooding not only enlarges the swept volume but also enhances the displacement efficiency. The effects of reservoir heterogeneity, the gas-liquid ratio of ASPF system, and the concentrations of polymer and surfactant on the displacement efficiency were studied. A field trial of ASPF flooding has also been conducted. Both the laboratory results and the field trial results show that the ASPF flooding can significantly increase the oil recovery, with a 30% increase in the proportion of the original oil in place recovered compared with water flooding.
基金Supported by the High-tech Research and Development Program of China(2014AA041802)
文摘It is a challenge to conserve energy for the large-scale petrochemical enterprises due to complex production process and energy diversification. As critical energy consumption equipment of atmospheric distillation oil refining process, the atmospheric distillation column is paid more attention to save energy. In this paper, the optimal problem of energy utilization efficiency of the atmospheric distillation column is solved by defining a new energy efficiency indicator - the distillation yield rate of unit energy consumption from the perspective of material flow and energy flow, and a soft-sensing model for this new energy efficiency indicator with respect to the multiple working conditions and intelligent optimizing control strategy are suggested for both increasing distillation yield and decreasing energy consumption in oil refining process. It is found that the energy utilization efficiency level of the atmospheric distillation column depends closely on the typical working conditions of the oil refining process, which result by changing the outlet temperature, the overhead temperature, and the bottom liquid level of the atmospheric pressure tower. The fuzzy C-means algorithm is used to classify the typical operation conditions of atmospheric distillation in oil refining process. Furthermore, the LSSVM method optimized with the improved particle swarm optimization is used to model the distillation rate of unit energy consumption. Then online optimization of oil refining process is realized by optimizing the outlet temperature, the overhead temperature with IPSO again. Simulation comparative analyses are made by empirical data to verify the effectiveness of the proposed solution.
基金Supported by China National Science and Technology Major Project(2016ZX05010002-004 and 2016ZX05023005-001-003)China Postdoctoral Science Foundation(2019M651255)National Natural Science Foundation of China(51804078).
文摘Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield.The experimental results show that the surface-active polymer is different from other common polymers and polymer-surfactant systems in molecular aggregation,viscosity and flow capacity,and it has larger molecular coil size,higher viscosity and viscosifying capacity,and poorer mobility.The surface-active polymer solution has good performance of viscosity-increasing and viscosity retention,and has good performance of viscoelasticity and deformability to exert positive effects of viscosifying and viscoelastic properties.Surface-active polymer can change the chemical property of interface and reduce interfacial tension,making the reservoir rock turn water-wet,also it can emulsify the oil into relatively stable oil-in-water emulsion,and emulsification capacity is an important property to enhance oil washing efficiency under non-ultralow interfacial tension.The surface-active polymer flooding enlarges swept volume in two ways:Microscopically,the surface-active polymer has mobility control effect and can enter oil-bearing pores not swept by water to drive residual oil,and its mobility control effect has more contribution than oil washing capacity in enhancing oil recovery.Macroscopically,it has plugging capacity,and can emulsify and plug the dominant channels in layers with high permeability,forcing the injected fluid to enter the layer with medium or low permeability and low flow resistance,and thus enlarging swept volume.
基金support from the National Natural Science Foundation of China(52174034)the Sichuan Science and Technology Program(2021YFH0081).
文摘Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and possible potential for heavy oil reservoirs.However,the addition of polymer may cause problems with injection in the case of highly viscous oil.Hence,in this study the feasibility of alkali-cosolvent(AC)flooding in heavy oil reservoirs was investigated via several groups of experiments.The interfacial tension between various AC formulations and heavy crude oil was measured to select appropriate formulations.Phase behavior tests were performed to determine the most appropriate formulation and conditions for the generation of a microemulsion.Sandpack flooding experiments were carried out to investigate the displacement efficiency of the selected Ac formulation.The results showed that the interfacial tension between an AC formulation and heavy oil could be reduced to below 1o-3 mN/m but differed greatly between different types of cosolvent.A butanol random polyether series displayed good performance in reducing the water-oil interfacial tension,which made it possible to form a Type Il microemulsion in reservoir conditions.According to the results of the phase behavior tests,the optimal salinity for different formulations with four cosolvent concentrations(0.5 wt%,1 wt%,2 wt%,and 3 wt%)was 4000,8000,14000,and 20000 ppm,respectively.The results of rheological measurements showed that Type Ill microemulsion had a viscosity that was ten times that of water.The results of sandpack flooding experiments showed that,in comparison with waterflooding,the injection of a certain Ac formulation slug could reduce the injection pressure.The pressure gradient during waterflooding and AC flooding was around 870 and 30-57 kPa/m,respectively.With the addition of an AC slug,the displacement efficiency was 30%-50%higher than in the case of waterflooding.