We show experimentally that when an unfocused continuous wave(CW) laser beam is obliquely incident onto the surface of a millimeter-sized mineral oil drop on sucrose solution, it will exert a pushing force on the oi...We show experimentally that when an unfocused continuous wave(CW) laser beam is obliquely incident onto the surface of a millimeter-sized mineral oil drop on sucrose solution, it will exert a pushing force on the oil drop, making it move forwards along the surface of the sucrose solution. However, after a period of time, the oil drop stops moving. This can be explained as the phenomenon caused by the change of Abraham momentum, the optical gradient force, and friction together.展开更多
With the increasing oil demand, the construction of oil energy reserves in China needs to be further strengthened. However, given that there has been no research on the main influencing factors of crude oil temperatur...With the increasing oil demand, the construction of oil energy reserves in China needs to be further strengthened. However, given that there has been no research on the main influencing factors of crude oil temperature drop in storage tanks under actual dynamically changing environments, this paper considers the influence of dynamic thermal environment and internal crude oil physical properties on the fluctuating changes in crude oil temperature. A theoretical model of the unsteady-state temperature drop heat transfer process is developed from a three-dimensional perspective. According to the temperature drop variation law of crude oil storage tank under the coupling effect of various heat transfer modes such as external forced convection, thermal radiation, and internal natural convection, the external dynamic thermal environment influence zone, the internal crude oil physical property influence zone, and the intermediate transition zone of the tank are proposed. And the multiple non-linear regression method is used to quantitatively characterize the influence of external ambient temperature, solar radiation, wind speed, internal crude oil density, viscosity, and specific heat capacity on the temperature drop of crude oil in each influencing zone. The results of this paper not only quantitatively explain the main influencing factors of the oil temperature drop in the top, wall, and bottom regions of the tank, but also provide a theoretical reference for oil security reserves under a dynamic thermal environment.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.90921009 and 11274401)
文摘We show experimentally that when an unfocused continuous wave(CW) laser beam is obliquely incident onto the surface of a millimeter-sized mineral oil drop on sucrose solution, it will exert a pushing force on the oil drop, making it move forwards along the surface of the sucrose solution. However, after a period of time, the oil drop stops moving. This can be explained as the phenomenon caused by the change of Abraham momentum, the optical gradient force, and friction together.
基金supported by the National Natural Science Foundation of China(52104064)(52074089)the China Postdoctoral Science Foundation(2020M681074)+3 种基金Heilongjiang Provincial Natural Science Foundation of China(YQ2023E006)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020152)Postdoctoral Science Foundation of Heilongjiang Province in China(LBH-TZ2106)(LBH-Z20122)Northeast Petroleum University Talents Introduction Fund(2019KQ18).
文摘With the increasing oil demand, the construction of oil energy reserves in China needs to be further strengthened. However, given that there has been no research on the main influencing factors of crude oil temperature drop in storage tanks under actual dynamically changing environments, this paper considers the influence of dynamic thermal environment and internal crude oil physical properties on the fluctuating changes in crude oil temperature. A theoretical model of the unsteady-state temperature drop heat transfer process is developed from a three-dimensional perspective. According to the temperature drop variation law of crude oil storage tank under the coupling effect of various heat transfer modes such as external forced convection, thermal radiation, and internal natural convection, the external dynamic thermal environment influence zone, the internal crude oil physical property influence zone, and the intermediate transition zone of the tank are proposed. And the multiple non-linear regression method is used to quantitatively characterize the influence of external ambient temperature, solar radiation, wind speed, internal crude oil density, viscosity, and specific heat capacity on the temperature drop of crude oil in each influencing zone. The results of this paper not only quantitatively explain the main influencing factors of the oil temperature drop in the top, wall, and bottom regions of the tank, but also provide a theoretical reference for oil security reserves under a dynamic thermal environment.