Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high sali...Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity.Toovercome this challenge,we synthesized a zwitterion polymer(PAMNS)with salt-induced tackifying property through copolymerization ofacrylamide and a zwitterion monomer,methylacrylamide propyl-N,N-dimethylbutylsulfonate(NS).NS monomer is obtained from thereaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide.In this study,the rheological properties,salt responsiveness,and EOR efficiency of PAMNS were evaluated.Results demonstrate that PAMNS exhibits desirable salt-induced tackifyingcharacteristics,with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30×10^(4)mg L^(-1).Furthermore,highvalence ions possess a much stronger effect on enhancing viscosity,manifested as Mg^(2+)>Ca^(2+)>Na^(+).Molecular dynamics simulations(MD)andfluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecularassociations in high-salinity environments.It is because of the salt-induced tackifying,PAMNS demonstrates superior performance inpolymerflooding experiments under salinity ranges from 5×10^(4)mg L^(-1)to 20×10^(4)mg L^(-1),leading to 10.38–19.83%higher EOR thantraditional polymers.展开更多
Supercritical carbon dioxide (scCO2) microemulsion was formed by supercritical CO2, H20, sodium bis(2-ethylhexyl) sulfosuccinate (AOT, surfactant) and C2HsOH (co-surfactant) under pressures higher than 8 MPa a...Supercritical carbon dioxide (scCO2) microemulsion was formed by supercritical CO2, H20, sodium bis(2-ethylhexyl) sulfosuccinate (AOT, surfactant) and C2HsOH (co-surfactant) under pressures higher than 8 MPa at 45 ℃. The fundamental characteristics of the scCO2 microemulsion and the minimum miscibility pressure (MMP) with Daqing oil were investigated with a high-pressure falling sphere viscometer, a high-pressure interfacial tension meter, a PVT cell and a slim tube test. The mechanism of the scCO2 microemulsion for enhancing oil recovery is discussed. The results showed that the viscosity and density of the scCO2 microemulsion were higher than those of the scCO2 fluid at the same pressure and temperature. The results of interfacial tension and slim tube tests indicated that the MMP of the scCO2 microemulsion and crude oil was lower than that of the scCO2 and crude oil at 45 ℃. It is the combined action of viscosity, density and MMP which made the oil recovery efficiency of the scCO2 microemulsion higher than that of the scCO2 fluid.展开更多
Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To a...Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To achieve appropriate ultimate oil recovery in these reservoirs,a water-based enhanced oil recovery method must be capable of altering the wettability of matrix blocks.Previous studies showed that carbonated water can alter wettability of carbonate oil-wet rocks toward less oil-wet or neutral wettability conditions,but the degree of modification is not high enough to allow water to imbibe spontaneously into the matrix blocks at an effective rate.In this study,we manipulated carbonated brine chemistry to enhance its wettability alteration features and hence to improve water imbibition rate and ultimate oil recovery upon spontaneous imbibition in dolomite rocks.First,the contact angle and interfacial tension(IFT)of brine/crude oil systems were measured for several synthetic brine samples with different compositions.Thereafter,two solutions with a significant difference in WAI(wettability alteration index)but approximately equal brine/oil IFT were chosen for spontaneous imbibition experiments.In the next step,spontaneous imbibition experiments at ambient and high pressures were conducted to evaluate the ability of carbonated smart water in enhancing the spontaneous imbibition rate and ultimate oil recovery in dolomite rocks.Experimental results showed that an appropriate adjustment of the imbibition brine(i.e.,carbonated smart water)chemistry improves imbibition rate of carbonated water in oil-wet dolomite rocks as well as the ultimate oil recovery.展开更多
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have ...Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have been scarcely reported in the field of enhancing oil recovery(EOR).Herein,a kind of organic-based flexible JAPNs was prepared by paraffin emulsion methods.The lateral sizes of JAPNs were ranging from hundreds of nanometers to several micrometers and the thickness was about 3 nm.The organic-based nanosheets were equipped with remarkably flexible structures,which could improve their injection performance.The dispersion and interfacial properties of JAPNs were studied systematically.By modification of crosslinking agent containing multiple amino groups,the JAPNs had excellent hydro-philicity and salt resistance compared with conventional inorganic or composite nanosheets.The settling time of nanosuspension with NaCl and CaCl_(2) at a low salinity of 1000 mg/L was over 240 h.The value could also remain 124 h under the salinity of 10,000 mg/L NaCl.With the dual functionalities of Janus amphiphilic nature and nanoparticles'Pickering effect,JAPNs could change rock wettability and form emulsions as"colloidal surfactants",In particular,a new technology called optical microrheology was pioneered to explore the destabilization state of nanosuspensions for the first time.Since precipitation lagged behind aggregation,especially for stable suspension systems,the onset of the unstable behavior was difficult to be detected by conventional methods,which should be the indicator of reduced effec-tiveness for nanofluid products.In addition,the oil displacement experiments demonstrated that the JAPNs could enhance oil recovery by 17.14%under an ultra-low concentration of 0.005%and were more suitable for low permeability cores.The findings can help for a better understanding of the material preparation of polymer nanosheets.We also hope that this study could shed more light on the nano-flooding technology for EOR.展开更多
Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several st...Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several studies have been conducted in model systems, while experiments with rocks and reservoir fluids are scarce. This study presents a core-flooding experiment of LSW injection, with and without surfactant, using the core and heavy oil samples obtained from a sandstone reservoir in southeastern Mexico. The effluents and the crude oil obtained at each stage were analyzed. The study was complemented by tomographic analysis. The results revealed that LSW injection and hybrid process with surfactants obtained an increase of 11.4 percentage points in recovery factor. Various phenomena were caused by LSW flooding, such as changes in wettability and pH, ion exchange, mineral dissolution, detachment of fines and modification of the hydrocarbon profile. In the surfactant flooding, the reduction of interfacial tension and alteration of wettability were the main mechanisms involved. The findings of this work also showed that the conditions believed to be necessary for enhanced oil recovery with LSW, such as the presence of kaolinite or high acid number oil, are not relevant.展开更多
In this paper, a FCC co-catalyst for enhancing the light oil production was prepared by the sol-gel method, and its effect on the performance of residue cracking catalysts was evaluated in a CCFFB reactor. The test re...In this paper, a FCC co-catalyst for enhancing the light oil production was prepared by the sol-gel method, and its effect on the performance of residue cracking catalysts was evaluated in a CCFFB reactor. The test results indicated that the liquid product yield increased obviously, after the surface of FCC equilibrium catalyst was impregnated with the co-catalyst. The yields of dry gas, slurry and coke decreased, while the diesel yield changed slightly. And the crackability of residue was increased; the rate of coke deposition on catalyst surface was decreased, with the thermal cracking reactions inhibited. All these results showed that the co-catalyst could improve the density of acid sites and change the catalyst acidity, which could promote to prolong the catalyst activity by depositing the co-catalyst on the surface of FCC equilibrium catalysts.展开更多
Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-f...Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.展开更多
The intensive development of tight reservoirs has positioned them as a strategic alternative to conventional oil and gas resources. Existing enhanced oil recovery(EOR) methods struggle to effectively exploring reservo...The intensive development of tight reservoirs has positioned them as a strategic alternative to conventional oil and gas resources. Existing enhanced oil recovery(EOR) methods struggle to effectively exploring reservoir oil, resulting in low recovery rates. Novel and effective means of developing tight reservoirs are urgently needed. Nanomaterials have shown promising applications in improving water flooding efficiency, with in-depth research into mechanisms that lower injection pressure and increase water injection volumes. However, the extent of improvement remains limited. In this study, a silicon quantum dots(Si-QDs) material was synthesized via a hydrothermal synthesis method and used to prepare a nanofluid for the efficient recovery of tight reservoir. The Si-QDs, with an approximate diameter of 3 nm and a spherical structure, were surface functionalized with benzenesulfonic acid groups to enhance the performance. The developed nanofluid demonstrated stability without aggregation at 120℃ and a salinity of 60000 mg/L. Core flooding experiments have demonstrated the attractive EOR capabilities of Si-QDs, shedding light of the EOR mechanisms. Si-QDs effectively improve the wettability of rocks, enhancing the sweeping coefficient of injected fluids and expanding sweeping area.Within this sweeping region, Si-QDs efficiently stripping adsorbed oil from the matrix, thus increasing sweeping efficiency. Furthermore, Si-QDs could modify the state of pore-confined crude oil, breaking it down into smaller particles that are easier to displacement in subsequent stages. Si-QDs exhibit compelling EOR potential, positioning them as a promising approach for effectively developing tight oil reservoirs.展开更多
This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume i...This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume in horizontal well fracturing.A numerical model is established to investigate the production rate,reservoir pressure field,and CO_(2)saturation distribution corresponding to changing time of CO_(2)flooding with radial borehole fracturing.A sensitivity analysis on the influence of CO_(2)injection location,layer spacing,pressure difference,borehole number,and hydraulic fractures on oil production and CO_(2)storage is conducted.The CO_(2)flooding process is divided into four stages.Reductions in layer spacing will significantly improve oil production rate and gas storage capacity.However,serious gas channeling can occur when the spacing is lower than 20 m.Increasing the pressure difference between the producer and injector,the borehole number,the hydraulic fracture height,and the fracture width can also increase the oil production rate and gas storage rate.Sensitivity analysis shows that layer spacing and fracture height greatly influence gas storage and oil production.Research outcomes are expected to provide a theoretical basis for the efficient development of shale oil reservoirs in the vertical direction.展开更多
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl...This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.展开更多
Laboratory experiments,numerical simulations and fracturing technology were combined to address the problems in shale oil recovery by CO_(2)injection.The laboratory experiments were conducted to investigate the displa...Laboratory experiments,numerical simulations and fracturing technology were combined to address the problems in shale oil recovery by CO_(2)injection.The laboratory experiments were conducted to investigate the displacement mechanisms of shale oil extraction by CO_(2)injection,and the influences of CO_(2)pre-pad on shale mechanical properties.Numerical simulations were performed about influences of CO_(2)pre-pad fracturing and puff-n-huff for energy replenishment on the recovery efficiency.The findings obtained were applied to the field tests of CO_(2)pre-pad fracturing and single well puff-n-huff.The results show that the efficiency of CO_(2)puff-n-huff is affected by micro-and nano-scale effect,kerogen,adsorbed oil and so on,and a longer soaking time in a reasonable range leads to a higher exploitation degree of shale oil.In the"injection+soaking"stage,the exploitation degree of heavy hydrocarbons is enhanced by CO_(2)through its effects of solubility-diffusion and mass-transfer.In the"huff"stage,crude oil in large pores is displaced by CO_(2)to surrounding larger pores or bedding fractures and finally flows to the production well.The injection of CO_(2)pre-pad is conducive to keeping the rock brittle and reducing the fracture breakdown pressure,and the CO_(2)is liable to filter along the bedding surface,thereby creating a more complex fracture.Increasing the volume of CO_(2)pre-pad can improve the energizing effect,and enhance the replenishment of formation energy.Moreover,the oil recovery is more enhanced by CO_(2)huff-n-puff with the lower shale matrix permeability,the lower formation pressure,and the larger heavy hydrocarbon content.The field tests demonstrate a good performance with the pressure maintained well after CO_(2)pre-pad fracturing,the formation energy replenished effectively after CO_(2)huff-n-puff in a single well,and the well productivity improved.展开更多
CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fractio...CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
This paper describes a simple, easy process for screening microorganisms, and introduces a laboratory simulation device and process of microbial enhanced oil recovery (MEOR) , which is a necessary research step for t...This paper describes a simple, easy process for screening microorganisms, and introduces a laboratory simulation device and process of microbial enhanced oil recovery (MEOR) , which is a necessary research step for trial in oilfields. The MEOR mechanism and the influence of adsorption, diffusion, metabolism, nutrition, porosity, and permeability are analyzed. The research indicates that different microbes have different efficiencies in EOR and that different culture types play different roles in EOR. The effect of syrup is better than that of glucose, and larger porosity is favorable to the reproduction and growth of microbes, thereby improving the oil recovery. Using crude oil as a single carbon source is more appreciable because of the decrease in cost of oil recovery. At the end of this paper, the development of polymerase chain reaction (PCR) for the future is discussed.展开更多
This paper describes the experience of Jilin oilfield trials for Microbial Enhanced Oil Recovery (MEOR). A new technique to identify microbes with DNA for MEOR has been established, and useful microbes selected f...This paper describes the experience of Jilin oilfield trials for Microbial Enhanced Oil Recovery (MEOR). A new technique to identify microbes with DNA for MEOR has been established, and useful microbes selected for use in field trials. Behaviors of bacteria activated in the reservoir, oil recovery and water cut, and the viscosity of crude oil produced through huff & puff testing and flooding with molasses-injection tests, have been investigated in situ. CJF-002, which produces biopolysaccharide, is the best among the microbes used for field trials, as it can use molasses as nutrient and produce a small quantity of CO2 and a mass of water-insoluble biopolymer. The metabolic behavior in the reservoir showed that CJF-002 had a good potentiality for MEOR.展开更多
Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to inte...Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to interactions in crude oil-brine-rock system,with introduction of different wetting states and their influence on fluid distribution in pore spaces.The effect of wettability on oil recovery of waterflooding was then summarized from past and recent research to emphasize the importance of wettability in oil displacement by brine.The mechanism of wettability alteration by different surfactants in both carbonate and sandstone reservoirs was analyzed,concerning their distinct surface chemistry,and different interaction patterns of surfactants with components on rock surface.Other concerns such as the combined effect of wettability alteration and interfacial tension (IFT) reduction on the imbibition process was also taken into account.Generally,surfactant induced wettability alteration for enhanced oil recovery is still in the stage of laboratory investigation.The successful application of this technique relies on a comprehensive survey of target reservoir conditions,and could be expected especially in low permeability fractured reservoirs and forced imbibition process.展开更多
A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%o...A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%of original oil in place from these reserves, the need for enhanced oil recovery(EOR) techniques for incremental oil recovery has become imperative. With the challenges presented by the highly heterogeneous carbonate rocks,evaluation of tertiary-stage recovery techniques including chemical EOR(c EOR) has been a high priority for researchers and oil producers. In this review, the latest developments in the surfactant-based c EOR techniques applied in carbonate formations are discussed, contemplating the future direction of existing methodologies. In connection with this, the characteristics of heterogeneous carbonate reservoirs are outlined. Detailed discussion on surfactant-led oil recovery mechanisms and related processes, such as wettability alteration, interfacial tension reduction, microemulsion phase behavior, surfactant adsorption and mitigation, and foams and their applications is presented. Laboratory experiments, as well as field study data obtained using several surfactants, are also included.This extensive discussion on the subject aims to help researchers and professionals in the field to understand the current situation and plan future enterprises accordingly.展开更多
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi...Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.展开更多
基金support of the National Natural Science Foundation of China(No.52120105007)the National Key Research and Development Program of China(2019Y FA0708700)are gratefully acknowledged.
文摘Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity.Toovercome this challenge,we synthesized a zwitterion polymer(PAMNS)with salt-induced tackifying property through copolymerization ofacrylamide and a zwitterion monomer,methylacrylamide propyl-N,N-dimethylbutylsulfonate(NS).NS monomer is obtained from thereaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide.In this study,the rheological properties,salt responsiveness,and EOR efficiency of PAMNS were evaluated.Results demonstrate that PAMNS exhibits desirable salt-induced tackifyingcharacteristics,with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30×10^(4)mg L^(-1).Furthermore,highvalence ions possess a much stronger effect on enhancing viscosity,manifested as Mg^(2+)>Ca^(2+)>Na^(+).Molecular dynamics simulations(MD)andfluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecularassociations in high-salinity environments.It is because of the salt-induced tackifying,PAMNS demonstrates superior performance inpolymerflooding experiments under salinity ranges from 5×10^(4)mg L^(-1)to 20×10^(4)mg L^(-1),leading to 10.38–19.83%higher EOR thantraditional polymers.
基金support from the National Natural Science Fund (50904073)the CNPC Science and Technology Innovation Fund (2008D-5006-02-06)
文摘Supercritical carbon dioxide (scCO2) microemulsion was formed by supercritical CO2, H20, sodium bis(2-ethylhexyl) sulfosuccinate (AOT, surfactant) and C2HsOH (co-surfactant) under pressures higher than 8 MPa at 45 ℃. The fundamental characteristics of the scCO2 microemulsion and the minimum miscibility pressure (MMP) with Daqing oil were investigated with a high-pressure falling sphere viscometer, a high-pressure interfacial tension meter, a PVT cell and a slim tube test. The mechanism of the scCO2 microemulsion for enhancing oil recovery is discussed. The results showed that the viscosity and density of the scCO2 microemulsion were higher than those of the scCO2 fluid at the same pressure and temperature. The results of interfacial tension and slim tube tests indicated that the MMP of the scCO2 microemulsion and crude oil was lower than that of the scCO2 and crude oil at 45 ℃. It is the combined action of viscosity, density and MMP which made the oil recovery efficiency of the scCO2 microemulsion higher than that of the scCO2 fluid.
基金financial support from National Iranian South Oil Company(NISOC)
文摘Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To achieve appropriate ultimate oil recovery in these reservoirs,a water-based enhanced oil recovery method must be capable of altering the wettability of matrix blocks.Previous studies showed that carbonated water can alter wettability of carbonate oil-wet rocks toward less oil-wet or neutral wettability conditions,but the degree of modification is not high enough to allow water to imbibe spontaneously into the matrix blocks at an effective rate.In this study,we manipulated carbonated brine chemistry to enhance its wettability alteration features and hence to improve water imbibition rate and ultimate oil recovery upon spontaneous imbibition in dolomite rocks.First,the contact angle and interfacial tension(IFT)of brine/crude oil systems were measured for several synthetic brine samples with different compositions.Thereafter,two solutions with a significant difference in WAI(wettability alteration index)but approximately equal brine/oil IFT were chosen for spontaneous imbibition experiments.In the next step,spontaneous imbibition experiments at ambient and high pressures were conducted to evaluate the ability of carbonated smart water in enhancing the spontaneous imbibition rate and ultimate oil recovery in dolomite rocks.Experimental results showed that an appropriate adjustment of the imbibition brine(i.e.,carbonated smart water)chemistry improves imbibition rate of carbonated water in oil-wet dolomite rocks as well as the ultimate oil recovery.
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金supported by the National Natural Science Foundation of China(52074320)Petrochina Strategic Cooperation Science and Technology Project(ZLZX2020-01-04-03)。
文摘Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have been scarcely reported in the field of enhancing oil recovery(EOR).Herein,a kind of organic-based flexible JAPNs was prepared by paraffin emulsion methods.The lateral sizes of JAPNs were ranging from hundreds of nanometers to several micrometers and the thickness was about 3 nm.The organic-based nanosheets were equipped with remarkably flexible structures,which could improve their injection performance.The dispersion and interfacial properties of JAPNs were studied systematically.By modification of crosslinking agent containing multiple amino groups,the JAPNs had excellent hydro-philicity and salt resistance compared with conventional inorganic or composite nanosheets.The settling time of nanosuspension with NaCl and CaCl_(2) at a low salinity of 1000 mg/L was over 240 h.The value could also remain 124 h under the salinity of 10,000 mg/L NaCl.With the dual functionalities of Janus amphiphilic nature and nanoparticles'Pickering effect,JAPNs could change rock wettability and form emulsions as"colloidal surfactants",In particular,a new technology called optical microrheology was pioneered to explore the destabilization state of nanosuspensions for the first time.Since precipitation lagged behind aggregation,especially for stable suspension systems,the onset of the unstable behavior was difficult to be detected by conventional methods,which should be the indicator of reduced effec-tiveness for nanofluid products.In addition,the oil displacement experiments demonstrated that the JAPNs could enhance oil recovery by 17.14%under an ultra-low concentration of 0.005%and were more suitable for low permeability cores.The findings can help for a better understanding of the material preparation of polymer nanosheets.We also hope that this study could shed more light on the nano-flooding technology for EOR.
文摘Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several studies have been conducted in model systems, while experiments with rocks and reservoir fluids are scarce. This study presents a core-flooding experiment of LSW injection, with and without surfactant, using the core and heavy oil samples obtained from a sandstone reservoir in southeastern Mexico. The effluents and the crude oil obtained at each stage were analyzed. The study was complemented by tomographic analysis. The results revealed that LSW injection and hybrid process with surfactants obtained an increase of 11.4 percentage points in recovery factor. Various phenomena were caused by LSW flooding, such as changes in wettability and pH, ion exchange, mineral dissolution, detachment of fines and modification of the hydrocarbon profile. In the surfactant flooding, the reduction of interfacial tension and alteration of wettability were the main mechanisms involved. The findings of this work also showed that the conditions believed to be necessary for enhanced oil recovery with LSW, such as the presence of kaolinite or high acid number oil, are not relevant.
文摘In this paper, a FCC co-catalyst for enhancing the light oil production was prepared by the sol-gel method, and its effect on the performance of residue cracking catalysts was evaluated in a CCFFB reactor. The test results indicated that the liquid product yield increased obviously, after the surface of FCC equilibrium catalyst was impregnated with the co-catalyst. The yields of dry gas, slurry and coke decreased, while the diesel yield changed slightly. And the crackability of residue was increased; the rate of coke deposition on catalyst surface was decreased, with the thermal cracking reactions inhibited. All these results showed that the co-catalyst could improve the density of acid sites and change the catalyst acidity, which could promote to prolong the catalyst activity by depositing the co-catalyst on the surface of FCC equilibrium catalysts.
基金supported by the Open Fund of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs(No.KFJJ-TZ-2020-2)the National Natural Science Foundation of China(No.52104030)+1 种基金the Key Research and Development Program of Shaanxi(No.2022 KW-35)the China Fundamental Research Funds for the Central Universities。
文摘Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.
基金the financial support from the National Natural Science Foundation of China (Nos. 52074249, 51874261, 52304011)。
文摘The intensive development of tight reservoirs has positioned them as a strategic alternative to conventional oil and gas resources. Existing enhanced oil recovery(EOR) methods struggle to effectively exploring reservoir oil, resulting in low recovery rates. Novel and effective means of developing tight reservoirs are urgently needed. Nanomaterials have shown promising applications in improving water flooding efficiency, with in-depth research into mechanisms that lower injection pressure and increase water injection volumes. However, the extent of improvement remains limited. In this study, a silicon quantum dots(Si-QDs) material was synthesized via a hydrothermal synthesis method and used to prepare a nanofluid for the efficient recovery of tight reservoir. The Si-QDs, with an approximate diameter of 3 nm and a spherical structure, were surface functionalized with benzenesulfonic acid groups to enhance the performance. The developed nanofluid demonstrated stability without aggregation at 120℃ and a salinity of 60000 mg/L. Core flooding experiments have demonstrated the attractive EOR capabilities of Si-QDs, shedding light of the EOR mechanisms. Si-QDs effectively improve the wettability of rocks, enhancing the sweeping coefficient of injected fluids and expanding sweeping area.Within this sweeping region, Si-QDs efficiently stripping adsorbed oil from the matrix, thus increasing sweeping efficiency. Furthermore, Si-QDs could modify the state of pore-confined crude oil, breaking it down into smaller particles that are easier to displacement in subsequent stages. Si-QDs exhibit compelling EOR potential, positioning them as a promising approach for effectively developing tight oil reservoirs.
基金This study has been funded by the National Science Fund for Distinguished Young Scholars(No.52204063)Science Foundation of China University of Petroleum,Beijing(No.2462023BJRC025).Moreover,we would like to express our heartfelt appreciation to the Computational Geosciences group in the Department of Mathematics and Cybernetics at SINTEF Digital for developing and providing the free open-source MATLAB Reservoir Simulation Toolbox(MRST)used in this research.
文摘This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume in horizontal well fracturing.A numerical model is established to investigate the production rate,reservoir pressure field,and CO_(2)saturation distribution corresponding to changing time of CO_(2)flooding with radial borehole fracturing.A sensitivity analysis on the influence of CO_(2)injection location,layer spacing,pressure difference,borehole number,and hydraulic fractures on oil production and CO_(2)storage is conducted.The CO_(2)flooding process is divided into four stages.Reductions in layer spacing will significantly improve oil production rate and gas storage capacity.However,serious gas channeling can occur when the spacing is lower than 20 m.Increasing the pressure difference between the producer and injector,the borehole number,the hydraulic fracture height,and the fracture width can also increase the oil production rate and gas storage rate.Sensitivity analysis shows that layer spacing and fracture height greatly influence gas storage and oil production.Research outcomes are expected to provide a theoretical basis for the efficient development of shale oil reservoirs in the vertical direction.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ04,2023ZZ08)。
文摘This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.
基金Supported by Basic and Forward-Looking Project of the Science and Technology Department of SINOPEC(P22213-4)。
文摘Laboratory experiments,numerical simulations and fracturing technology were combined to address the problems in shale oil recovery by CO_(2)injection.The laboratory experiments were conducted to investigate the displacement mechanisms of shale oil extraction by CO_(2)injection,and the influences of CO_(2)pre-pad on shale mechanical properties.Numerical simulations were performed about influences of CO_(2)pre-pad fracturing and puff-n-huff for energy replenishment on the recovery efficiency.The findings obtained were applied to the field tests of CO_(2)pre-pad fracturing and single well puff-n-huff.The results show that the efficiency of CO_(2)puff-n-huff is affected by micro-and nano-scale effect,kerogen,adsorbed oil and so on,and a longer soaking time in a reasonable range leads to a higher exploitation degree of shale oil.In the"injection+soaking"stage,the exploitation degree of heavy hydrocarbons is enhanced by CO_(2)through its effects of solubility-diffusion and mass-transfer.In the"huff"stage,crude oil in large pores is displaced by CO_(2)to surrounding larger pores or bedding fractures and finally flows to the production well.The injection of CO_(2)pre-pad is conducive to keeping the rock brittle and reducing the fracture breakdown pressure,and the CO_(2)is liable to filter along the bedding surface,thereby creating a more complex fracture.Increasing the volume of CO_(2)pre-pad can improve the energizing effect,and enhance the replenishment of formation energy.Moreover,the oil recovery is more enhanced by CO_(2)huff-n-puff with the lower shale matrix permeability,the lower formation pressure,and the larger heavy hydrocarbon content.The field tests demonstrate a good performance with the pressure maintained well after CO_(2)pre-pad fracturing,the formation energy replenished effectively after CO_(2)huff-n-puff in a single well,and the well productivity improved.
基金The financial supports received from the National Natural Science Foundation of China(Nos.22178378,22127812)。
文摘CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
文摘This paper describes a simple, easy process for screening microorganisms, and introduces a laboratory simulation device and process of microbial enhanced oil recovery (MEOR) , which is a necessary research step for trial in oilfields. The MEOR mechanism and the influence of adsorption, diffusion, metabolism, nutrition, porosity, and permeability are analyzed. The research indicates that different microbes have different efficiencies in EOR and that different culture types play different roles in EOR. The effect of syrup is better than that of glucose, and larger porosity is favorable to the reproduction and growth of microbes, thereby improving the oil recovery. Using crude oil as a single carbon source is more appreciable because of the decrease in cost of oil recovery. At the end of this paper, the development of polymerase chain reaction (PCR) for the future is discussed.
文摘This paper describes the experience of Jilin oilfield trials for Microbial Enhanced Oil Recovery (MEOR). A new technique to identify microbes with DNA for MEOR has been established, and useful microbes selected for use in field trials. Behaviors of bacteria activated in the reservoir, oil recovery and water cut, and the viscosity of crude oil produced through huff & puff testing and flooding with molasses-injection tests, have been investigated in situ. CJF-002, which produces biopolysaccharide, is the best among the microbes used for field trials, as it can use molasses as nutrient and produce a small quantity of CO2 and a mass of water-insoluble biopolymer. The metabolic behavior in the reservoir showed that CJF-002 had a good potentiality for MEOR.
文摘Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to interactions in crude oil-brine-rock system,with introduction of different wetting states and their influence on fluid distribution in pore spaces.The effect of wettability on oil recovery of waterflooding was then summarized from past and recent research to emphasize the importance of wettability in oil displacement by brine.The mechanism of wettability alteration by different surfactants in both carbonate and sandstone reservoirs was analyzed,concerning their distinct surface chemistry,and different interaction patterns of surfactants with components on rock surface.Other concerns such as the combined effect of wettability alteration and interfacial tension (IFT) reduction on the imbibition process was also taken into account.Generally,surfactant induced wettability alteration for enhanced oil recovery is still in the stage of laboratory investigation.The successful application of this technique relies on a comprehensive survey of target reservoir conditions,and could be expected especially in low permeability fractured reservoirs and forced imbibition process.
文摘A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%of original oil in place from these reserves, the need for enhanced oil recovery(EOR) techniques for incremental oil recovery has become imperative. With the challenges presented by the highly heterogeneous carbonate rocks,evaluation of tertiary-stage recovery techniques including chemical EOR(c EOR) has been a high priority for researchers and oil producers. In this review, the latest developments in the surfactant-based c EOR techniques applied in carbonate formations are discussed, contemplating the future direction of existing methodologies. In connection with this, the characteristics of heterogeneous carbonate reservoirs are outlined. Detailed discussion on surfactant-led oil recovery mechanisms and related processes, such as wettability alteration, interfacial tension reduction, microemulsion phase behavior, surfactant adsorption and mitigation, and foams and their applications is presented. Laboratory experiments, as well as field study data obtained using several surfactants, are also included.This extensive discussion on the subject aims to help researchers and professionals in the field to understand the current situation and plan future enterprises accordingly.
基金supported by Key Program of National Natural Science Foundation of China (No. 52130401)National Natural Science Foundation of China (No. 52104055)+1 种基金China National Postdoctoral Program for Innovative Talents (No. BX20200386)China Postdoctoral Science Foundation (No. 2021M703586)。
文摘Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.