Krylov subspace projection methods are known to be highly efficient for solving large linear systems. Many different versions arise from different choices to the left and right subspaces. These methods were classified...Krylov subspace projection methods are known to be highly efficient for solving large linear systems. Many different versions arise from different choices to the left and right subspaces. These methods were classified into two groups in terms of the different forms of matrix H-m, the main properties in applications and the new versions of these two types of methods were briefly reviewed, then one of the most efficient versions, GMRES method was applied to oil reservoir simulation. The block Pseudo-Elimination method was used to generate the preconditioned matrix. Numerical results show much better performance of this preconditioned techniques and the GMRES method than that of preconditioned ORTHMIN method, which is now in use in oil reservoir simulation. Finally, some limitations of Krylov subspace methods and some potential improvements to this type of methods are further presented.展开更多
For the system of multilayer dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some techniques, such as calculus ...For the system of multilayer dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources.展开更多
文摘Krylov subspace projection methods are known to be highly efficient for solving large linear systems. Many different versions arise from different choices to the left and right subspaces. These methods were classified into two groups in terms of the different forms of matrix H-m, the main properties in applications and the new versions of these two types of methods were briefly reviewed, then one of the most efficient versions, GMRES method was applied to oil reservoir simulation. The block Pseudo-Elimination method was used to generate the preconditioned matrix. Numerical results show much better performance of this preconditioned techniques and the GMRES method than that of preconditioned ORTHMIN method, which is now in use in oil reservoir simulation. Finally, some limitations of Krylov subspace methods and some potential improvements to this type of methods are further presented.
基金Project supported by the Major State Basic Research Program of China (No.G1999032803)the National Tackling Key Problems Program (No.20050200069)the National Natural Science Foundation of China (Nos.10372052,10271066)the Doctoral Foundation of Ministry of Education of China(No.20030422047)
文摘For the system of multilayer dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources.