Plant maintenance has been a discipline that has gradually evolved with the industrial revolution. For quite some time, it has been a "necessary evil" in production, manufacturing, and process settings. The changing...Plant maintenance has been a discipline that has gradually evolved with the industrial revolution. For quite some time, it has been a "necessary evil" in production, manufacturing, and process settings. The changing business needs and industrial conditions have had various impacts on the maintenance process, particularly over the last few years. While some industries have inherent difficulties seeing what maintenance is all about, others have begun to add more flavor to the organizational maintenance practices. This article brings an overview of developments within the offshore oil and gas production sector.展开更多
Along with oil and gas operations, huge amounts of sulfur byproducts are produced. For example, in the State of Qatar which has the third largest proven reserves of natural gas, an incredible amount of sulfur is produ...Along with oil and gas operations, huge amounts of sulfur byproducts are produced. For example, in the State of Qatar which has the third largest proven reserves of natural gas, an incredible amount of sulfur is produced as byproduct from its natural gas processing facilities. The amount of produced sulfur surpasses by far the amount that can be utilized currently in the country. Hydrogen sulfide (H2S) existing in natural gas extracted from Qatar’s North Field is converted to elemental sulfur using the conventional Claus process. Managing byproduct sulfur from natural gas processing is a key aspect of economic development and environmental protection in many countries with oil and gas facilities. Therefore, new markets must be found to utilize sulfur to avoid disposal crises. Sulfur byproduct from natural gas can be utilized for various applications. This paper discusses alternative potential uses for sulfur in addition to the current practices of sulfur utilization. Some of these alternative applications of sulfur byproducts include the potential usage for medicinal uses, road construction, batteries, hydrogen production, structural additives, solar energy, waste treatment, arsenite removal, and production of maize.展开更多
Mycoflora of atmospheric air and dust samples collected from air conditioning systems in 12 of each I.C.U. (intensive care units) and O.R. (operation rooms) were tested using settle and dilution plate methods on f...Mycoflora of atmospheric air and dust samples collected from air conditioning systems in 12 of each I.C.U. (intensive care units) and O.R. (operation rooms) were tested using settle and dilution plate methods on four types of agar media and incubated at 25℃. Forty-five fungal species representing 23 genera were isolated and identified. The most prevalent genera recorded were Cladosporium, Aspergillus, Penicillium and Fusarium. The total colony forming units of airborne fungi recovered in I.C.U. and O.R. ranged between 31.13-49.61 colonies/m3 on the four types of media usedl The fungal total catch of the dust samples collected from the air conditioning system filters in I.C.U. and O.R. were ranged from 65.5-170 colonies/mg dust. Since, the interest to replace synthetic xenobiotics by natural compounds with low environmental persistence and biodegradable to control such airborne fungal contaminants is needed. In this respect, essential oils showed to possess a broad spectrum of antifungal activity. Fungal static ability of six oils was tested on 30 different fungal isolates. Vapors of common thyme oil exhibited the strongest inhibitory effects on the tested isolates, whereas the headspace vapors of blue gum and ginger had no inhibitory effects on the tested fungal isolates. These data revealed that the air conditioning systems may be an important source of contamination in I.C.U. and O.R. of Assiut university hospitals. Thus, patients may be in risk of being exposed to contaminated atmospheric air by opportunistic fungi and the use of essential oils as an alternative option to control hospital wards from fungal contaminants needs further studies.展开更多
文摘Plant maintenance has been a discipline that has gradually evolved with the industrial revolution. For quite some time, it has been a "necessary evil" in production, manufacturing, and process settings. The changing business needs and industrial conditions have had various impacts on the maintenance process, particularly over the last few years. While some industries have inherent difficulties seeing what maintenance is all about, others have begun to add more flavor to the organizational maintenance practices. This article brings an overview of developments within the offshore oil and gas production sector.
文摘Along with oil and gas operations, huge amounts of sulfur byproducts are produced. For example, in the State of Qatar which has the third largest proven reserves of natural gas, an incredible amount of sulfur is produced as byproduct from its natural gas processing facilities. The amount of produced sulfur surpasses by far the amount that can be utilized currently in the country. Hydrogen sulfide (H2S) existing in natural gas extracted from Qatar’s North Field is converted to elemental sulfur using the conventional Claus process. Managing byproduct sulfur from natural gas processing is a key aspect of economic development and environmental protection in many countries with oil and gas facilities. Therefore, new markets must be found to utilize sulfur to avoid disposal crises. Sulfur byproduct from natural gas can be utilized for various applications. This paper discusses alternative potential uses for sulfur in addition to the current practices of sulfur utilization. Some of these alternative applications of sulfur byproducts include the potential usage for medicinal uses, road construction, batteries, hydrogen production, structural additives, solar energy, waste treatment, arsenite removal, and production of maize.
文摘Mycoflora of atmospheric air and dust samples collected from air conditioning systems in 12 of each I.C.U. (intensive care units) and O.R. (operation rooms) were tested using settle and dilution plate methods on four types of agar media and incubated at 25℃. Forty-five fungal species representing 23 genera were isolated and identified. The most prevalent genera recorded were Cladosporium, Aspergillus, Penicillium and Fusarium. The total colony forming units of airborne fungi recovered in I.C.U. and O.R. ranged between 31.13-49.61 colonies/m3 on the four types of media usedl The fungal total catch of the dust samples collected from the air conditioning system filters in I.C.U. and O.R. were ranged from 65.5-170 colonies/mg dust. Since, the interest to replace synthetic xenobiotics by natural compounds with low environmental persistence and biodegradable to control such airborne fungal contaminants is needed. In this respect, essential oils showed to possess a broad spectrum of antifungal activity. Fungal static ability of six oils was tested on 30 different fungal isolates. Vapors of common thyme oil exhibited the strongest inhibitory effects on the tested isolates, whereas the headspace vapors of blue gum and ginger had no inhibitory effects on the tested fungal isolates. These data revealed that the air conditioning systems may be an important source of contamination in I.C.U. and O.R. of Assiut university hospitals. Thus, patients may be in risk of being exposed to contaminated atmospheric air by opportunistic fungi and the use of essential oils as an alternative option to control hospital wards from fungal contaminants needs further studies.