The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are requ...The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are required: temperature, sunshine, rainfall, etc. The oil palm ensures its survival through the fruits borne on bunches located at the axis of the 17th to 20th leaves from the central stem. From pollination to the maturity of a bunch it takes about 4.5 to 6 months. Several events occur during this period: seed enlargement, weight increase, colour change, etc., but also important physiological changes: synthesis of some pigments (anthocyanin), increase in oil content correlated with the decrease in water content, etc. All of these constitute factors that can provide a better understanding of the biology of the seed. The aim of this work was to review some of the important parameters involved in the development and maturation of oil palm fruit bunches. These factors are classified into physiological, biochemical as well as environmental. The physiological parameters are color, appearance of embryo, seed weight and fruit detachment from bunches;Biochemical parameters include water content, oil content, carbohydrate, protein, mineral contents and lipase activity while temperature is the main environmental factor that affects fruit maturation. Thorough research has not yet been done at the different stages of maturation and ripening, thus a deep look into this may open up new avenues for research on early germinated oil palm seed production prior to seed dormancy.展开更多
The kinetics of the sorption of Cd^2+ and CF^3+ from aqueous solutions by mercaptoacetic acid modified and unmodified oil palm fruit fibre adsorbents were investigated. The results indicate that sorption equilibrium...The kinetics of the sorption of Cd^2+ and CF^3+ from aqueous solutions by mercaptoacetic acid modified and unmodified oil palm fruit fibre adsorbents were investigated. The results indicate that sorption equilibrium was reached within 60 min for both metals. Also, the removal efficiency of the three adsorbents was observed to increase for both metals with stronger treatments with mercaptoacetic acid. This may be attributed to the influence of the thiolation of the adsorbents. Furthermore, Cr^3+ had higher removal percentages than Cd^2+ for all the adsorbents. The sorption mechanism based on the intraparticle diffusion model shows that Cd^2+ sorption is better described than Cr^3+. The intraparticle diffusion rate constants, Kid, for Cd^2+ are 62.04 min^-1 (untreated), 67.01 min^-1 (treated with 0.5 mol/L mercaptoacetic acid), and 71.43 min^-1 (treated with 1.0 mol/L mercaptocacetic acid) while those for Cr^3+ are 63.41 min^-1 (untreated), 65.79 min (0.5 mol/L acid treated), and 66.25 min^-1 (1.0 mol/L acid treated).展开更多
The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced b...The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation of activation time with 30 min at 800℃. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R^2=0.93) for removal of 2,4-dichlorophenol by the activated carbon rather than Freundlich isotherm (R^2=0.88).展开更多
The oil palm leaf miner, Coelaenomenodera lameensis, is currently the most destructive pest of oil palm in Ghana and other African oil palm growing countries, causing significant losses in fresh fruit bunch yield. Pro...The oil palm leaf miner, Coelaenomenodera lameensis, is currently the most destructive pest of oil palm in Ghana and other African oil palm growing countries, causing significant losses in fresh fruit bunch yield. Progressive pruning is an oil palm pruning method in which pruning is done at the same time as fresh fruit bunch harvesting. This study evaluated the impact of progressive pruning on leaf miner population in oil palm and how these two factors (leaf miner and progressive pruning) affect the yield of oil palm at the Benso Oil Palm Plantation Public listed company (BOPP. Plc). Five distinct blocks in the plantation were selected for observations on fronds at various ranks (33, 25, or 17) based on the degree of defoliation by counting the number of pests on leaflets at different phases of insect development. Fronds from selected plots were sampled in a Completely Randomized Design (CRD). The size of plots used for the study ranged between 19 to 45 hectares. A minimum of 78 fronds were evenly cut from each block for pest count depending on the block size. Secondary data on annual yields of fresh fruit bunches before and after the introduction of progressive pruning were also obtained from BOPP. Plc records from 2011-2020. The results from the analyzed data on leaf miner index before and after the introduction of progressive pruning showed that progressive pruning has, to a high extent (64% to 36%), reduced leaf miner populations in the plantation. Paired t-test on fresh fruit bunch yield has also revealed a significant (p < 0.001) increase in annual fresh fruit bunch yield due to progressive pruning. A regression analysis, however, revealed a lower rate of yield loss (3.05 to 2.70 tonnes) to leaf miner infestation after the introduction of progressive pruning. The study recommends progressive pruning as a key cultural practice for improving crop yields in leaf miner prone plantations.展开更多
Robot technology is a very promising technology for agricultural sector, but the existing industrial robot could not deliver the above-mentioned criteria. Industrial robot mainly uses high voltage electrical power, wh...Robot technology is a very promising technology for agricultural sector, but the existing industrial robot could not deliver the above-mentioned criteria. Industrial robot mainly uses high voltage electrical power, which is not available at field and outdoor operation. The only available and reliable power is a hydraulic from the tractor. The harvester robot consumes the hydraulic power from the tractor and at the same time the tractor can be used as a traveling device for the robot. This paper describes the study on the development of autonomous tractor for the oil palm harvester. The development took considerations on the design of the electro-hydraulic system and the control software for the robot structure to be flexible enough to operate in plantation environment.展开更多
This work investigated the bio-oil production from oil palm empty fruit bunch (EFB) by continuous pyrolysis reactor under nitrogen and steam atmospheres as sweeping gas. The study parameters were particle size, biomas...This work investigated the bio-oil production from oil palm empty fruit bunch (EFB) by continuous pyrolysis reactor under nitrogen and steam atmospheres as sweeping gas. The study parameters were particle size, biomass feeding rate, reactor temperature, and reactor sweeping gas. The EFB particle ranges were below 500 micrometers, between 500 - 1180 micrometers and 1180 - 2230 micrometers. Feeding rates were 150, 350, and 550 rpm. Both factors were analyzed by single factor ANOVA. Additionally, Box-Behnken design was used to investigate temperature (350oC - 600oC) under the following nitrogen and steam flow rates as sweeping gas: 0, 100, and 200 cm3/min of nitrogen and 0, 9, and 18 cm3/min of steam. The mathematical model from Box-Behnken design succeeded in predicting the optimal conditions for normal and nitrogen atmospheres. A particle size below 1180 μm was determined to be optimal for bio-oil production. In a normal atmosphere or no sweeping gas, the condition was 475oC and 450 rpm of feed rate. The optimal condition for nitrogen atmosphere was 530oC, 450 rpm of feed rate, and 200 cm3/min of nitrogen flow rate. However, steam as sweeping gas caused high uncertainty and the model was unable to predict the optimal conditions accurately. The biooils from normal, nitrogen, steam, and mixed atmospheres were analyzed for general characteristics. NMR and GC-MS were used to analyze chemical compositions in the bio-oils. Relationships between physical and chemical characteristics were determined and discussed.展开更多
Indonesia is the most producer of crude palm oil (CPO) worldwide with production more that 25 million tons in 2013. Through increasing production of CPO the wastes generated are growing up as well. The empty fruit bun...Indonesia is the most producer of crude palm oil (CPO) worldwide with production more that 25 million tons in 2013. Through increasing production of CPO the wastes generated are growing up as well. The empty fruit bunch of oil palm (EFB) is one of the solid waste (biomass) which is generated at the palm oil mill. Its amount is equivalent to the CPO production, but only about 50% of its weight are good fibers for further usage as industrial raw material. The EFB fiber consists an interesting honey comb/lightweight structure. By mixing the EFB natural fiber with bio binding agent based on potato the environmental friendly materials (biocomposites) can be produced which are 100% biodegadrable. The biocomposites with 2 mm thickness have strengthness about 7 GPa according to the 3 points bending test standard of DIN 53 457. After coating process the environmental friendly lightweight materials with density less than 0.4 g/cm3 will be ready to be implemented for different technical applications.展开更多
Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a...Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a major constituent in black liquor,with quantities varying from 20%to 30%,of which a very low share is used for manufacturing value-added products,while the rest is mainly burned for energy purposes,thus underestimating its great potential as a raw material.Therefore,it is essential to establish new isolation and extraction methods to increase lignin valorization in the development of bio-based chemicals.The aim of this research work was to determine the effect of KOH or ethanol concentration as an isolation agent on lignin yields and the chemical characteristics of lignin isolated from formacell black liquor of oil palm empty fruit bunch(OPEFB).Isolation of lignin was carried out using KOH with various concentrations ranging from 5%to 15%(w/v).Ethanol was also used to precipitate lignin from black liquor at concentrations varying from 5%to 30%(v/v).The results obtained showed that the addition of KOH solution at 12.5%and 15%concentrations resulted in better lignin yield and chemical properties of lignin,i.e.,pH values of 3.86 and 4.27,lignin yield of 12.78%and 14.95%,methoxyl content of 11.33%and 10.13%,and lignin equivalent weights of 476.25 and 427.03,respectively.Due to its phenolic structure and rich functional groups that are favorable for modifications,lignin has the potential to be used as a green additive in the development of advanced biocomposite products in various applications to replace current fossil fuel-based material,ranging from fillers,fire retardants,formaldehyde scavengers,carbon fibers,aerogels,and wood adhesives.展开更多
文摘The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are required: temperature, sunshine, rainfall, etc. The oil palm ensures its survival through the fruits borne on bunches located at the axis of the 17th to 20th leaves from the central stem. From pollination to the maturity of a bunch it takes about 4.5 to 6 months. Several events occur during this period: seed enlargement, weight increase, colour change, etc., but also important physiological changes: synthesis of some pigments (anthocyanin), increase in oil content correlated with the decrease in water content, etc. All of these constitute factors that can provide a better understanding of the biology of the seed. The aim of this work was to review some of the important parameters involved in the development and maturation of oil palm fruit bunches. These factors are classified into physiological, biochemical as well as environmental. The physiological parameters are color, appearance of embryo, seed weight and fruit detachment from bunches;Biochemical parameters include water content, oil content, carbohydrate, protein, mineral contents and lipase activity while temperature is the main environmental factor that affects fruit maturation. Thorough research has not yet been done at the different stages of maturation and ripening, thus a deep look into this may open up new avenues for research on early germinated oil palm seed production prior to seed dormancy.
文摘The kinetics of the sorption of Cd^2+ and CF^3+ from aqueous solutions by mercaptoacetic acid modified and unmodified oil palm fruit fibre adsorbents were investigated. The results indicate that sorption equilibrium was reached within 60 min for both metals. Also, the removal efficiency of the three adsorbents was observed to increase for both metals with stronger treatments with mercaptoacetic acid. This may be attributed to the influence of the thiolation of the adsorbents. Furthermore, Cr^3+ had higher removal percentages than Cd^2+ for all the adsorbents. The sorption mechanism based on the intraparticle diffusion model shows that Cd^2+ sorption is better described than Cr^3+. The intraparticle diffusion rate constants, Kid, for Cd^2+ are 62.04 min^-1 (untreated), 67.01 min^-1 (treated with 0.5 mol/L mercaptoacetic acid), and 71.43 min^-1 (treated with 1.0 mol/L mercaptocacetic acid) while those for Cr^3+ are 63.41 min^-1 (untreated), 65.79 min (0.5 mol/L acid treated), and 66.25 min^-1 (1.0 mol/L acid treated).
文摘The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation of activation time with 30 min at 800℃. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R^2=0.93) for removal of 2,4-dichlorophenol by the activated carbon rather than Freundlich isotherm (R^2=0.88).
文摘The oil palm leaf miner, Coelaenomenodera lameensis, is currently the most destructive pest of oil palm in Ghana and other African oil palm growing countries, causing significant losses in fresh fruit bunch yield. Progressive pruning is an oil palm pruning method in which pruning is done at the same time as fresh fruit bunch harvesting. This study evaluated the impact of progressive pruning on leaf miner population in oil palm and how these two factors (leaf miner and progressive pruning) affect the yield of oil palm at the Benso Oil Palm Plantation Public listed company (BOPP. Plc). Five distinct blocks in the plantation were selected for observations on fronds at various ranks (33, 25, or 17) based on the degree of defoliation by counting the number of pests on leaflets at different phases of insect development. Fronds from selected plots were sampled in a Completely Randomized Design (CRD). The size of plots used for the study ranged between 19 to 45 hectares. A minimum of 78 fronds were evenly cut from each block for pest count depending on the block size. Secondary data on annual yields of fresh fruit bunches before and after the introduction of progressive pruning were also obtained from BOPP. Plc records from 2011-2020. The results from the analyzed data on leaf miner index before and after the introduction of progressive pruning showed that progressive pruning has, to a high extent (64% to 36%), reduced leaf miner populations in the plantation. Paired t-test on fresh fruit bunch yield has also revealed a significant (p < 0.001) increase in annual fresh fruit bunch yield due to progressive pruning. A regression analysis, however, revealed a lower rate of yield loss (3.05 to 2.70 tonnes) to leaf miner infestation after the introduction of progressive pruning. The study recommends progressive pruning as a key cultural practice for improving crop yields in leaf miner prone plantations.
文摘Robot technology is a very promising technology for agricultural sector, but the existing industrial robot could not deliver the above-mentioned criteria. Industrial robot mainly uses high voltage electrical power, which is not available at field and outdoor operation. The only available and reliable power is a hydraulic from the tractor. The harvester robot consumes the hydraulic power from the tractor and at the same time the tractor can be used as a traveling device for the robot. This paper describes the study on the development of autonomous tractor for the oil palm harvester. The development took considerations on the design of the electro-hydraulic system and the control software for the robot structure to be flexible enough to operate in plantation environment.
文摘This work investigated the bio-oil production from oil palm empty fruit bunch (EFB) by continuous pyrolysis reactor under nitrogen and steam atmospheres as sweeping gas. The study parameters were particle size, biomass feeding rate, reactor temperature, and reactor sweeping gas. The EFB particle ranges were below 500 micrometers, between 500 - 1180 micrometers and 1180 - 2230 micrometers. Feeding rates were 150, 350, and 550 rpm. Both factors were analyzed by single factor ANOVA. Additionally, Box-Behnken design was used to investigate temperature (350oC - 600oC) under the following nitrogen and steam flow rates as sweeping gas: 0, 100, and 200 cm3/min of nitrogen and 0, 9, and 18 cm3/min of steam. The mathematical model from Box-Behnken design succeeded in predicting the optimal conditions for normal and nitrogen atmospheres. A particle size below 1180 μm was determined to be optimal for bio-oil production. In a normal atmosphere or no sweeping gas, the condition was 475oC and 450 rpm of feed rate. The optimal condition for nitrogen atmosphere was 530oC, 450 rpm of feed rate, and 200 cm3/min of nitrogen flow rate. However, steam as sweeping gas caused high uncertainty and the model was unable to predict the optimal conditions accurately. The biooils from normal, nitrogen, steam, and mixed atmospheres were analyzed for general characteristics. NMR and GC-MS were used to analyze chemical compositions in the bio-oils. Relationships between physical and chemical characteristics were determined and discussed.
文摘Indonesia is the most producer of crude palm oil (CPO) worldwide with production more that 25 million tons in 2013. Through increasing production of CPO the wastes generated are growing up as well. The empty fruit bunch of oil palm (EFB) is one of the solid waste (biomass) which is generated at the palm oil mill. Its amount is equivalent to the CPO production, but only about 50% of its weight are good fibers for further usage as industrial raw material. The EFB fiber consists an interesting honey comb/lightweight structure. By mixing the EFB natural fiber with bio binding agent based on potato the environmental friendly materials (biocomposites) can be produced which are 100% biodegadrable. The biocomposites with 2 mm thickness have strengthness about 7 GPa according to the 3 points bending test standard of DIN 53 457. After coating process the environmental friendly lightweight materials with density less than 0.4 g/cm3 will be ready to be implemented for different technical applications.
基金This work was also supported by the Project“Development,Properties,and Application of Eco-Friendly Wood-Based Composites”,No.HИC-Б-1145/04.2021,carried out at the University of Forestry,Sofia,Bulgaria.The authors would like to acknowledge the Fundamental Research Grant Scheme(FRGS 2018-1)Reference Code:FRGS/1/2018/WAB07/UPM/1 provided by the Ministry of Higher Education,Malaysia.
文摘Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a major constituent in black liquor,with quantities varying from 20%to 30%,of which a very low share is used for manufacturing value-added products,while the rest is mainly burned for energy purposes,thus underestimating its great potential as a raw material.Therefore,it is essential to establish new isolation and extraction methods to increase lignin valorization in the development of bio-based chemicals.The aim of this research work was to determine the effect of KOH or ethanol concentration as an isolation agent on lignin yields and the chemical characteristics of lignin isolated from formacell black liquor of oil palm empty fruit bunch(OPEFB).Isolation of lignin was carried out using KOH with various concentrations ranging from 5%to 15%(w/v).Ethanol was also used to precipitate lignin from black liquor at concentrations varying from 5%to 30%(v/v).The results obtained showed that the addition of KOH solution at 12.5%and 15%concentrations resulted in better lignin yield and chemical properties of lignin,i.e.,pH values of 3.86 and 4.27,lignin yield of 12.78%and 14.95%,methoxyl content of 11.33%and 10.13%,and lignin equivalent weights of 476.25 and 427.03,respectively.Due to its phenolic structure and rich functional groups that are favorable for modifications,lignin has the potential to be used as a green additive in the development of advanced biocomposite products in various applications to replace current fossil fuel-based material,ranging from fillers,fire retardants,formaldehyde scavengers,carbon fibers,aerogels,and wood adhesives.