Electromotor on oil platform often has mechanical failures.In order to achieve monitoring and diagnosis of the electromotor,common diagnostic methods of electromotor are summarized first,and then vibration monitoring ...Electromotor on oil platform often has mechanical failures.In order to achieve monitoring and diagnosis of the electromotor,common diagnostic methods of electromotor are summarized first,and then vibration monitoring is regarded as a suitable method for monitoring and diagnosing of mechanical failures by comparing the advantages and disadvantages of each method and characteristics of mechanical faults.At last,the fault frequencies and arrangements of vibration measuring points are analyzed.By using vibration monitoring method,the diagnosis of bearing faults of electromotor is carried out.The results show that the analysis of condition monitoring methods for electromotor is meanning for machine maintenance and repair,and it lays foundation for computerized repair system and resource management system.展开更多
Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be dist...Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be distributed over the entire pile in the water and they change not only in magnitude but also in direction with depth. Our calculations show that the maximum total force caused by a soliton with its associated current of 2.1 m s-1 is nearly equal to the maximum total force exerted by a surface wave with a wavelength of 300 m and a wave-height of 18 m. The total internal soliton force is large enough to affect the operations of marine oil platforms and other facilities. Therefore, the influence of internal solitons should not be neglected in the design of oil platforms.展开更多
We analyzed the frequency distribution characteristics of wind speeds occurring at different offshore sites within a range of 0-200 km based on the sea surface wind data captured via buoys and oil platforms located al...We analyzed the frequency distribution characteristics of wind speeds occurring at different offshore sites within a range of 0-200 km based on the sea surface wind data captured via buoys and oil platforms located along the east coast of Guangdong Province. The results of the analysis showed that average wind speed measured for each station reached a maximum in winter while minima occurred in summer, corresponding to obvious seasonal variation, and average wind speed increased with offshore distance. The prevailing wind direction at the nearshore site is the east-erly wind, and the frequency of winds within 6-10 m s^-1 is considerable with that of winds at 〉 10 m s^-1. With the in-crease of the offshore distance, the winds were less affected by the land, and the prevailing wind direction gradually became northerly winds, predominately those at 〉 10 m s^-1. For areas of shorter offshore distance (〈 100 km), sur-face wind speeds fundamentally conformed to a two-parameter Weibull distribution, but there was a significant dif-ference between wind speed probability distributions and the Weibull distribution in areas more than 100 km off-shore. The mean wind speeds and wind speed standard deviations increased with the offshore distance, indicating that with the increase of the wind speed, the pulsation of the winds increased obviously, resulting in an increase in the ra-tio of the mean wind speed to the standard deviation of wind speed. When the ratio was large, the skewness became negative. When a relatively great degree of dispersion was noted between the observed skewness and the skewness corresponding to the theoretical Weibull curve, the wind speed probability distribution could not be adequately de-scribed by a Weibull distribution. This study provides a basis for the verification of the adaptability of Weibull distri-bution in different sea areas.展开更多
文摘Electromotor on oil platform often has mechanical failures.In order to achieve monitoring and diagnosis of the electromotor,common diagnostic methods of electromotor are summarized first,and then vibration monitoring is regarded as a suitable method for monitoring and diagnosing of mechanical failures by comparing the advantages and disadvantages of each method and characteristics of mechanical faults.At last,the fault frequencies and arrangements of vibration measuring points are analyzed.By using vibration monitoring method,the diagnosis of bearing faults of electromotor is carried out.The results show that the analysis of condition monitoring methods for electromotor is meanning for machine maintenance and repair,and it lays foundation for computerized repair system and resource management system.
基金This study is supported by the National Natural Science Foundation of China(Projects under contract Nos.40506007,49676275 and 49976002)the Natural Science Foundation of Shandong Province(No.Y2000E04)Microwave Imaging National Key Laboratory Foundation(No.51442020103JW1002).
文摘Internal soliton forces on oil-platform piles in the ocean are estimated with the Morison Formula. Different from sur- face wave forces, which change only in magnitude along a pile, internal soliton forces can be distributed over the entire pile in the water and they change not only in magnitude but also in direction with depth. Our calculations show that the maximum total force caused by a soliton with its associated current of 2.1 m s-1 is nearly equal to the maximum total force exerted by a surface wave with a wavelength of 300 m and a wave-height of 18 m. The total internal soliton force is large enough to affect the operations of marine oil platforms and other facilities. Therefore, the influence of internal solitons should not be neglected in the design of oil platforms.
基金Supported by the Science and Technology Planning Project of Guangdong Province of China(2013B020200013 and2016A020223015)Guangzhou Municipal Science and Technology Planning Project of China(201604020069 and 201607020043)
文摘We analyzed the frequency distribution characteristics of wind speeds occurring at different offshore sites within a range of 0-200 km based on the sea surface wind data captured via buoys and oil platforms located along the east coast of Guangdong Province. The results of the analysis showed that average wind speed measured for each station reached a maximum in winter while minima occurred in summer, corresponding to obvious seasonal variation, and average wind speed increased with offshore distance. The prevailing wind direction at the nearshore site is the east-erly wind, and the frequency of winds within 6-10 m s^-1 is considerable with that of winds at 〉 10 m s^-1. With the in-crease of the offshore distance, the winds were less affected by the land, and the prevailing wind direction gradually became northerly winds, predominately those at 〉 10 m s^-1. For areas of shorter offshore distance (〈 100 km), sur-face wind speeds fundamentally conformed to a two-parameter Weibull distribution, but there was a significant dif-ference between wind speed probability distributions and the Weibull distribution in areas more than 100 km off-shore. The mean wind speeds and wind speed standard deviations increased with the offshore distance, indicating that with the increase of the wind speed, the pulsation of the winds increased obviously, resulting in an increase in the ra-tio of the mean wind speed to the standard deviation of wind speed. When the ratio was large, the skewness became negative. When a relatively great degree of dispersion was noted between the observed skewness and the skewness corresponding to the theoretical Weibull curve, the wind speed probability distribution could not be adequately de-scribed by a Weibull distribution. This study provides a basis for the verification of the adaptability of Weibull distri-bution in different sea areas.