In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the di...In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the distribution of remaining oil horizontal wells have been given full play to stabilizing oil production and controlling water cut, reducing the producing pressure drop, improving well productivity and other advantages, and the development and deployment has been optimized; horizontal wells have been applied to solve problems such as old well casing damages, shutting down wells, low-productivity and low- efficiency wells, and high water cut wells to improve the utilization rate of old wells; through separate layer system improved injection production pattern, adjustment wells have been optimized and deployed, and part measures wells have been preferably selected to tap the residual oil improve the degree of reserves control realize the stabilization of oil production and control of water cut in an old oilfield, and further improve the development effects.展开更多
This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoir...This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.展开更多
This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adap...This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect.展开更多
This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technol...This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.展开更多
The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity...The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.展开更多
Environmentally unfriendly Oil exploration activities have been ongoing in the Soku area of the Niger Delta of Nigeria since 1956. This study evaluated the concentration of hydrocarbons and heavy metals in Shellfish a...Environmentally unfriendly Oil exploration activities have been ongoing in the Soku area of the Niger Delta of Nigeria since 1956. This study evaluated the concentration of hydrocarbons and heavy metals in Shellfish and drinking water sources in the study area. It revealed the absence (<0.001 mg/l) of most heavy metals (Ni, Ch, Cd, Pb mg/l) in the water column;a high concentration of the major ion composition of seawater (sulphates 5 - 1018;calcium 0.502 - 53.502;sodium 1.247 - 63.337;potassium 0.508 - 102.745;magnesium 0.354 - 42.574 mg/l);and high PAHs (<0.001 - 0.032 mg/l) levels occurring above WHO limits (0.007 mg/l) with some risk of exposure to cancer. Results from the analysis of shellfish showed that concentrations of chromium and zinc were below permissible limits while cadmium concentrations were slightly above permissible limits of the European Community. Nickel and lead were above permissible limits in the fish samples in all standards while PAHs occurred at the cancer risk levels of 10?6. A review of the public health situation in the Soku area with a view to understanding current trends, sources of perturbations and preferable solutions to the potential public health challenges raised in this study is hereby recommended. Also, this study recommends that relevant agencies and developmental partners should launch a national drive to create awareness among people/environmental/public health professionals’/health workers/administrators on this regional concern.展开更多
We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties....We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties. In the first pollution scenario, the oil product was introduced into wet river sand, and in the second case, dry sand was contaminated by the oil product and was then moistened with water. By considering these two scenarios as multicomponent dispersion systems with varying degrees of contamination and humidity, and by using a polystructural granular model with pore spaces and closed inclusions, we calculated that the heat conductivity of the sandy soil increased under the first pollution scenario and decreased under the second, but the change in the volumetric heat capacity of the sandy soil was proportional only to the amount of oil pollution, not the manner in which it was introduced. We also determined the temperature dependencies of these two thermophysical properties of sandy soil when polluted by oil, of which information will be useful for future containment and remediation of oil-contaminated soil.展开更多
Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are in...Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials.展开更多
Kuwait is one of the major oil-producing countries, with an estimated oil production of around three million barrels/day. Increased oil production has resulted in the production of large amounts of produced water, whi...Kuwait is one of the major oil-producing countries, with an estimated oil production of around three million barrels/day. Increased oil production has resulted in the production of large amounts of produced water, which is a major problem for Kuwait Oil Company. Kuwait Oil Company generates large amounts of produced water daily and thus deserves special attention. A study of the characteristics of the produced water will determine how it can be treated and later used for irrigation or disposed without harming the environment. In this paper, samples of produced water from different oilfields in Kuwait were collected, and physiochemical analyses were carried out. The salt content, TDS and other physical characteristics of the Kuwait produced water samples were compared with those of other produced water samples from different oil-producing countries.展开更多
In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a ...In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a better understanding of the ecological state of soil cover, its resilience to anthropogenic impacts, and its possible disturbance caused by the drilling pad construction activity, and by the laying of geophysical profiles. An analysis of soil pollution for the study territory generally showed that the soils are polluted with chemical elements which refer to toxicity classes: Pb, Cu, Ni, Cr, Ba and Mn. High levels ofoil products were detected near boreholes. Strong mineralization was recorded in the soil near borehole. It has a chloride-sodium chemical composition. As a result of the construction of foundation pits, recesses, ditches and earth embankments, the soil is totally destroyed, and rock outcrops show up. Disturbances of the sod cover due to road construction or even by all-terrain vehicles in these extreme conditions entail an accelerated development of linear erosion to form scours and gullies. Elimination of the canopy layer leads to an increase in surface heating, and to an acceleration of permafrost thawing. Swamping is accelerated on negative relief forms due to the increased entry of melt waters.展开更多
With the petroleum industry endeavoring to develop promising oil and gas in deeper water, gas hydrates prevention is a serious concern for oil and gas producing companies producing at conditions in the hydrate region....With the petroleum industry endeavoring to develop promising oil and gas in deeper water, gas hydrates prevention is a serious concern for oil and gas producing companies producing at conditions in the hydrate region. This paper details lessons learned from the successful field deployment of AA LDHI and proper implementation strategies used for 3 different practical fields as case studies in the Gulf of Mexico. From the 3 field experiences, the AA LDHI has been used to replace the conventional thermodynamic hydrate inhibitor due to its numerous benefits during steady state operations and transition operations where AA LDHI is injected prior to extended shut in and restart for fields producing at low water cut. However, the strategy to develop a cost effective chemical management of hydrates for fields producing at high water cut is by pumping methanol or diesel to push down the wellbore fluid below the mud line during planned and unplanned shut-ins to delay water production, it also secures the riser with non hydrate fluids. This illustrates how the AA LDHIs are used in conjunction with more conventional hydrate management approaches to reach an optimal cost effective field hydrate management solution. However, this shows that the key to overall success of hydrate prevention is a full integration of a good front end design, a comprehensive deployment and an effective down hole monitoring system.展开更多
In recent years, the understanding of human health has progressed considerably, through the study and understanding of the symbiotic role played by the myriad microorganisms that populate the gut and do the digesting,...In recent years, the understanding of human health has progressed considerably, through the study and understanding of the symbiotic role played by the myriad microorganisms that populate the gut and do the digesting, and populate the skin and keep it healthy, and even populate the lining of the lungs and do the same. In plant life, it is the microorganisms in the soil—which “are” the soil’s fertility—which fulfil a similar symbiotic role in a healthy plant’s life, but as yet this is a subject most visible by its absence from all scientific discussion of good farming practice. The science underlying this understanding is summarised in this paper. Understanding this and nurturing the fertility of impoverished soil by “seeding it” with the appropriate mix of microorganisms is transformational for plant health and productivity. Significant results are indicated from early trial examples of doing this in rice, oil palm and tobacco cultivation in Malaysia.展开更多
Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, ...Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, according to the regression of real development costs, a new method for oil well economic water cut and oil well economic rate are set up, the production optimal allocation is developed with satisfactory results.展开更多
X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of ...X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of the oilfield reaches 60,000 m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/d due to the limitation of offshore platform, well trough and equipment, the oilfield is unable to continue liquid extraction. In order to maximize the oil production of the oilfield, it is necessary to study the strategy of shut in and cone pressure. Through numerical simulation, this paper analyzes the influence of different factors, such as crude oil density, viscosity, reservoir thickness, interlayer, permeability and so on, on the drop height of water cone and the effect of precipitation and oil increase after well shut in. At the same time, the weight of each factor is analyzed by combining the actual dynamic data with the fuzzy mathematics method, and the strategy of well shut in and cone pressure is formulated for the offshore strong bottom water reservoir. It provides the basis and guidance for the reasonable use of shut in pressure cone when the reservoir with strong bottom water meets the bottleneck of liquid volume.展开更多
In this paper,farming and crop cultivation effects of farming tools with"drill"which are invented independently in China are clarified firstly,containing horizontal cutting of soil,super deep ploughing,deep ...In this paper,farming and crop cultivation effects of farming tools with"drill"which are invented independently in China are clarified firstly,containing horizontal cutting of soil,super deep ploughing,deep loosening and not disturbing soil layer,granular soil,soil not easy to bond and harden,and one-time land preparation.It is a significant path to deeply develop and use the"five natural resources"not fully utilized by human beings(soil resources at plough bottom and below,saline-alkali land,natural rainfall,solar energy,oxygen)and realize"mitigation"of five natural disasters(flood,drought,high temperature,low temperature and climate warming).In the past 10 years,the farming tools have been applied in 40 kinds of crops in 26 provinces of China.Compared with vertical breaking of soil by traditional"plow",the amount of loose soil,water storage and dissolved oxygen in cultivated land increased by more than one time,and yield increased by 10%-50%.They have been applied in transformation of saline-alkali land in 10 provinces,and yield increased by 30%-150%.After Fenlong treatment for 1 and 2 years,biomass of sugarcane increased by 68.9%and 50.1%respectively.Net photosynthetic rates of Gramineous crops were improved by 6.82%-11.94%,while net photosynthetic rates of Legume crops were improved by 20.32%-32.08%.After"spiral drill","vertical two-knife drill","vertical three-knife drill"and other hollow series of Fenlong farming toolss were invented newly.They were the most advanced farming tools with large soil discharge and small resistance,and could be equipped in large-,medium-and small-size modern Fenlong agricultural machinery as key technology,thereby setting up a new"standard stalk"for world agricultural reform and bringing benefit to mankind.展开更多
Water injection can compensate for pressure depletion of production.This paper firstly investigated into the equilibrium issue among water influx,water injection and production.Equilibrium principle was elaborated thr...Water injection can compensate for pressure depletion of production.This paper firstly investigated into the equilibrium issue among water influx,water injection and production.Equilibrium principle was elaborated through deduction of equilibrium equation and presentation of equilibrium curves with an“equilibrium point”.Influences of artificial controllable factors(e.g.well ratio of injection to production and total well number)on equilibrium were particularly analyzed using field data.It was found that the influences were mainly reflected as the location move of equilibrium point with factor change.Then reservoir pressure maintenance level was especially introduced to reveal the variation law of liquid rate and oil rate with the rising of water cut.It was also found that,even if reservoir pressure kept constant,oil rate still inevitably declined.However,in the field,a stabilized oil rate was always pursued for development efficiency.Therefore,the equilibrium issue of stabilized oil production was studied deeply through probing into some effective measures to realize oil rate stability after the increase of water cut for the example reservoir.Successful example application indicated that the integrated approach was very practical and feasible,and hence could be used to the other similar reservoir.展开更多
文摘In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the distribution of remaining oil horizontal wells have been given full play to stabilizing oil production and controlling water cut, reducing the producing pressure drop, improving well productivity and other advantages, and the development and deployment has been optimized; horizontal wells have been applied to solve problems such as old well casing damages, shutting down wells, low-productivity and low- efficiency wells, and high water cut wells to improve the utilization rate of old wells; through separate layer system improved injection production pattern, adjustment wells have been optimized and deployed, and part measures wells have been preferably selected to tap the residual oil improve the degree of reserves control realize the stabilization of oil production and control of water cut in an old oilfield, and further improve the development effects.
文摘This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.
基金Supported by the National Key Research and Development Program of China(2018YFE0196000)National Science and Technology Major Project of China(2016ZX05010-006)CNPC Scientific Research and Technical Development Project(2019B-4113)
文摘This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect.
文摘This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.
基金supported by National Natural Science Foundation of China(41474115,42174155)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)。
文摘The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.
文摘Environmentally unfriendly Oil exploration activities have been ongoing in the Soku area of the Niger Delta of Nigeria since 1956. This study evaluated the concentration of hydrocarbons and heavy metals in Shellfish and drinking water sources in the study area. It revealed the absence (<0.001 mg/l) of most heavy metals (Ni, Ch, Cd, Pb mg/l) in the water column;a high concentration of the major ion composition of seawater (sulphates 5 - 1018;calcium 0.502 - 53.502;sodium 1.247 - 63.337;potassium 0.508 - 102.745;magnesium 0.354 - 42.574 mg/l);and high PAHs (<0.001 - 0.032 mg/l) levels occurring above WHO limits (0.007 mg/l) with some risk of exposure to cancer. Results from the analysis of shellfish showed that concentrations of chromium and zinc were below permissible limits while cadmium concentrations were slightly above permissible limits of the European Community. Nickel and lead were above permissible limits in the fish samples in all standards while PAHs occurred at the cancer risk levels of 10?6. A review of the public health situation in the Soku area with a view to understanding current trends, sources of perturbations and preferable solutions to the potential public health challenges raised in this study is hereby recommended. Also, this study recommends that relevant agencies and developmental partners should launch a national drive to create awareness among people/environmental/public health professionals’/health workers/administrators on this regional concern.
文摘We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties. In the first pollution scenario, the oil product was introduced into wet river sand, and in the second case, dry sand was contaminated by the oil product and was then moistened with water. By considering these two scenarios as multicomponent dispersion systems with varying degrees of contamination and humidity, and by using a polystructural granular model with pore spaces and closed inclusions, we calculated that the heat conductivity of the sandy soil increased under the first pollution scenario and decreased under the second, but the change in the volumetric heat capacity of the sandy soil was proportional only to the amount of oil pollution, not the manner in which it was introduced. We also determined the temperature dependencies of these two thermophysical properties of sandy soil when polluted by oil, of which information will be useful for future containment and remediation of oil-contaminated soil.
基金funded by the National Natural Science Foundation of China(42076217,41976205)Shandong Provincial Taishan Scholars Special Expert Project (ts201712079)+1 种基金Marine Geological Survey Program (DD20190231)Shandong Natural Science Foundation(ZR2017BD024)。
文摘Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials.
文摘Kuwait is one of the major oil-producing countries, with an estimated oil production of around three million barrels/day. Increased oil production has resulted in the production of large amounts of produced water, which is a major problem for Kuwait Oil Company. Kuwait Oil Company generates large amounts of produced water daily and thus deserves special attention. A study of the characteristics of the produced water will determine how it can be treated and later used for irrigation or disposed without harming the environment. In this paper, samples of produced water from different oilfields in Kuwait were collected, and physiochemical analyses were carried out. The salt content, TDS and other physical characteristics of the Kuwait produced water samples were compared with those of other produced water samples from different oil-producing countries.
文摘In this paper, research results from the time interval 2002-2012 are used to give an account of the chemical composition of soils on the territory of the Kovykta gas condensate field. The findings presented provide a better understanding of the ecological state of soil cover, its resilience to anthropogenic impacts, and its possible disturbance caused by the drilling pad construction activity, and by the laying of geophysical profiles. An analysis of soil pollution for the study territory generally showed that the soils are polluted with chemical elements which refer to toxicity classes: Pb, Cu, Ni, Cr, Ba and Mn. High levels ofoil products were detected near boreholes. Strong mineralization was recorded in the soil near borehole. It has a chloride-sodium chemical composition. As a result of the construction of foundation pits, recesses, ditches and earth embankments, the soil is totally destroyed, and rock outcrops show up. Disturbances of the sod cover due to road construction or even by all-terrain vehicles in these extreme conditions entail an accelerated development of linear erosion to form scours and gullies. Elimination of the canopy layer leads to an increase in surface heating, and to an acceleration of permafrost thawing. Swamping is accelerated on negative relief forms due to the increased entry of melt waters.
文摘With the petroleum industry endeavoring to develop promising oil and gas in deeper water, gas hydrates prevention is a serious concern for oil and gas producing companies producing at conditions in the hydrate region. This paper details lessons learned from the successful field deployment of AA LDHI and proper implementation strategies used for 3 different practical fields as case studies in the Gulf of Mexico. From the 3 field experiences, the AA LDHI has been used to replace the conventional thermodynamic hydrate inhibitor due to its numerous benefits during steady state operations and transition operations where AA LDHI is injected prior to extended shut in and restart for fields producing at low water cut. However, the strategy to develop a cost effective chemical management of hydrates for fields producing at high water cut is by pumping methanol or diesel to push down the wellbore fluid below the mud line during planned and unplanned shut-ins to delay water production, it also secures the riser with non hydrate fluids. This illustrates how the AA LDHIs are used in conjunction with more conventional hydrate management approaches to reach an optimal cost effective field hydrate management solution. However, this shows that the key to overall success of hydrate prevention is a full integration of a good front end design, a comprehensive deployment and an effective down hole monitoring system.
文摘In recent years, the understanding of human health has progressed considerably, through the study and understanding of the symbiotic role played by the myriad microorganisms that populate the gut and do the digesting, and populate the skin and keep it healthy, and even populate the lining of the lungs and do the same. In plant life, it is the microorganisms in the soil—which “are” the soil’s fertility—which fulfil a similar symbiotic role in a healthy plant’s life, but as yet this is a subject most visible by its absence from all scientific discussion of good farming practice. The science underlying this understanding is summarised in this paper. Understanding this and nurturing the fertility of impoverished soil by “seeding it” with the appropriate mix of microorganisms is transformational for plant health and productivity. Significant results are indicated from early trial examples of doing this in rice, oil palm and tobacco cultivation in Malaysia.
文摘Based on oil development costs, the application research in the technical and economic limits calculation of oil development and the production optimal allocation to all the oilfields, was finished. At the same time, according to the regression of real development costs, a new method for oil well economic water cut and oil well economic rate are set up, the production optimal allocation is developed with satisfactory results.
文摘X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of the oilfield reaches 60,000 m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/d due to the limitation of offshore platform, well trough and equipment, the oilfield is unable to continue liquid extraction. In order to maximize the oil production of the oilfield, it is necessary to study the strategy of shut in and cone pressure. Through numerical simulation, this paper analyzes the influence of different factors, such as crude oil density, viscosity, reservoir thickness, interlayer, permeability and so on, on the drop height of water cone and the effect of precipitation and oil increase after well shut in. At the same time, the weight of each factor is analyzed by combining the actual dynamic data with the fuzzy mathematics method, and the strategy of well shut in and cone pressure is formulated for the offshore strong bottom water reservoir. It provides the basis and guidance for the reasonable use of shut in pressure cone when the reservoir with strong bottom water meets the bottleneck of liquid volume.
基金Special Fund Project of Guangxi Innovation Driven Development(Guike AA17204037)Major Science and Technology Projects in Guangxi(Guike AA16380017)Team Project of Guangxi Academy of Agricultural Sciences(2015YT60).
文摘In this paper,farming and crop cultivation effects of farming tools with"drill"which are invented independently in China are clarified firstly,containing horizontal cutting of soil,super deep ploughing,deep loosening and not disturbing soil layer,granular soil,soil not easy to bond and harden,and one-time land preparation.It is a significant path to deeply develop and use the"five natural resources"not fully utilized by human beings(soil resources at plough bottom and below,saline-alkali land,natural rainfall,solar energy,oxygen)and realize"mitigation"of five natural disasters(flood,drought,high temperature,low temperature and climate warming).In the past 10 years,the farming tools have been applied in 40 kinds of crops in 26 provinces of China.Compared with vertical breaking of soil by traditional"plow",the amount of loose soil,water storage and dissolved oxygen in cultivated land increased by more than one time,and yield increased by 10%-50%.They have been applied in transformation of saline-alkali land in 10 provinces,and yield increased by 30%-150%.After Fenlong treatment for 1 and 2 years,biomass of sugarcane increased by 68.9%and 50.1%respectively.Net photosynthetic rates of Gramineous crops were improved by 6.82%-11.94%,while net photosynthetic rates of Legume crops were improved by 20.32%-32.08%.After"spiral drill","vertical two-knife drill","vertical three-knife drill"and other hollow series of Fenlong farming toolss were invented newly.They were the most advanced farming tools with large soil discharge and small resistance,and could be equipped in large-,medium-and small-size modern Fenlong agricultural machinery as key technology,thereby setting up a new"standard stalk"for world agricultural reform and bringing benefit to mankind.
基金the NSFC(National Natural Science Foundation of China)for supporting this article through two projects:the National Science Fund for Young Scholars of China(Grant No.51304164)“Research on the pressure dynamics of multiple-acidized-fractured horizontal wells in fractured-vuggy carbonate formations”+2 种基金the National Science Fund for Distinguished Young Scholars of China(Grant No.51525404),“Fracturing and acidizing in low permeability and tight reservoirs”financially supported by the Fok Ying Tung Education Foundation for Young Teachers in the Higher Education Institutions of China(Grant No.151050)financially supported by a basic research project under Grant No.2015JY0132 from the Science and Technology Department of Sichuan Province.
文摘Water injection can compensate for pressure depletion of production.This paper firstly investigated into the equilibrium issue among water influx,water injection and production.Equilibrium principle was elaborated through deduction of equilibrium equation and presentation of equilibrium curves with an“equilibrium point”.Influences of artificial controllable factors(e.g.well ratio of injection to production and total well number)on equilibrium were particularly analyzed using field data.It was found that the influences were mainly reflected as the location move of equilibrium point with factor change.Then reservoir pressure maintenance level was especially introduced to reveal the variation law of liquid rate and oil rate with the rising of water cut.It was also found that,even if reservoir pressure kept constant,oil rate still inevitably declined.However,in the field,a stabilized oil rate was always pursued for development efficiency.Therefore,the equilibrium issue of stabilized oil production was studied deeply through probing into some effective measures to realize oil rate stability after the increase of water cut for the example reservoir.Successful example application indicated that the integrated approach was very practical and feasible,and hence could be used to the other similar reservoir.