We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o...We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.展开更多
This study investigates the optical properties of sesame oil from traditional and industrial sources using a custom-designed semiconductor laser spectrometer, UV-Vis spectroscopy, and FTIR spectroscopy. Six samples we...This study investigates the optical properties of sesame oil from traditional and industrial sources using a custom-designed semiconductor laser spectrometer, UV-Vis spectroscopy, and FTIR spectroscopy. Six samples were collected from traditional presses and factories in Khartoum State and White Nile State. The spectrometer, constructed with a 680 nm semiconductor laser and various resistor values, measured the absorbance of sesame oil samples. UV-Vis spectroscopy identified absorbance peaks at 670 nm and 417 nm, corresponding to chlorophyll a and b. FTIR analysis showed nearly identical spectra among the samples, indicating similar chemical compositions. Laser spectrometer analysis revealed specific absorbance values for each sample. The results highlight the feasibility of using a 680 nm semiconductor laser for analyzing sesame oil, providing a cost-effective alternative to other wavelengths. This study demonstrates the potential of integrating traditional methods with modern spectroscopic techniques for the quality assessment of sesame oil.展开更多
Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model ...Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.展开更多
This paper intends to complete the primary logistics planning of oil products under the imbalance of supply and demand. An integrated mathematical programming model is developed to simultaneously find the balance betw...This paper intends to complete the primary logistics planning of oil products under the imbalance of supply and demand. An integrated mathematical programming model is developed to simultaneously find the balance between supply and demand, and optimize the logistics scheme. The model takes minimum logistics cost and resource adjustment cost as the objective function, and takes supply and demand capacity, transportation capacity, mass balance, and resource adjustment rules as constraints.Three adjustment rules are considered in the model, including resource adjustment within oil suppliers,within oil consumers, and between oil consumers. The model is tested on a large-scale primary logistics of a state-owned petroleum enterprise, involving 37 affiliated refineries, 31 procurement departments,286 market depots and dedicated consumers. After the unified optimization, the supply and demand imbalance is eased by 97% and the total cost is saved by 7%, which proves the effectiveness and applicability of the proposed model.展开更多
The clay mineral content of Daqing Gulong shale is in the range of about 35%–45%,with particle sizes less than 0.0039 mm.The horizontal fluidity of oil in Gulong shale is poor,with near-zero vertical flowability.As a...The clay mineral content of Daqing Gulong shale is in the range of about 35%–45%,with particle sizes less than 0.0039 mm.The horizontal fluidity of oil in Gulong shale is poor,with near-zero vertical flowability.As a result,Gulong shale has been considered to lack commercial value.In recent years,however,interdisciplinary research in geoscience,percolation mechanics,thermodynamics,and surface mechanics has demonstrated that Gulong shale oil has a high degree of maturity and a high residual hydrocarbon content.The expulsion efficiency of Gulong shale in the high mature stage is 32%–48%.Favorable storage spaces in Gulong shale include connecting pores and lamellar fractures developed between and within organic matter and clay mineral complexes.The shale oil mainly occurs in micro-and nano-pores,bedding fractures,and lamellar fractures,with a high gas–oil ratio and medium–high movable oil saturation.Gulong shale has the characteristics of high hardness,a high elastic modulus,and high fracture toughness.This study achieves breakthroughs in the exploration and development of Gulong shale,including the theories of hydrocarbon generation and accumulation,the technologies of mobility and fracturing,and recoverability.It confirms the major transition of Gulong shale from oil generation to oil production,which has extremely significant scientific value and application potential for China’s petroleum industry.展开更多
The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oi...The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oil. The H2S gas is mainly formed during thermochemical sulfate reduction (TSR) occurring in oil reservoirs or the thermal decomposition of sulfocompounds (TDS) in crude oil. H2S generation is controlled by thermal recovery time, temperature and the injected chemical compounds. The quantity of SO4^2- in the injected compounds is the most influencing factor for the rate of TSR reaction. Therefore, for prevention of H2S formation, periodic and effective monitoring should be undertaken and adequate H2S absorbent should also be provided during thermal recovery of heavy oil. The result suggests that great efforts should be made to reduce the SO4^2- source in heavy oil recovery, so as to restrain H2S generation in reservoirs. In situ burning or desulfurizer adsorption are suggested to reduce H2S levels. Prediction and prevention of H2S are important in heavy oil production. This will minimize environmental and human health risks, as well as equipment corrosion.展开更多
This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas p...This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry.展开更多
The structural changes brought about by shale oil revolution have inspired this paper of which the aim is to analyze the potential asymmetries related to the determinants of crude oil production in the USA.Thus,using ...The structural changes brought about by shale oil revolution have inspired this paper of which the aim is to analyze the potential asymmetries related to the determinants of crude oil production in the USA.Thus,using a Markov-switching dynamic regression model in which parameters change when oil production moves from one regime to the other,it is found that for both oil production and oil relative importance,the regime that was dominant during the 1980s and the early 1990s when oil production in the USA was substantially high is the same regime that has once again become dominant in the decade corresponding to the shale oil revolution.Furthermore,the study reveals the existence of asymmetries in the relationship between US crude oil production and both manufacturing production and the consumer price index.Asymmetries are also found in the relationship between the relative importance US crude oil and manufacturing production.Finally,it is found that the intercept and the variance parameter also vary from one regime to the other,thus justifying the use of regime-dependent models.展开更多
Low oil prices under the influence of economic structure transformation and slow economic growth have hit the existing markets of traditional big oil suppliers and upgraded the conflict of oil production capacity and ...Low oil prices under the influence of economic structure transformation and slow economic growth have hit the existing markets of traditional big oil suppliers and upgraded the conflict of oil production capacity and interest between OPEC producers and other big oil supplier countries such as the USA and Russia. Forecasting global oil production is significant for all countries for energy strategy planning, although many past forecasts have later been proved to be very seriously incorrect. In this paper,the original generalized Weng model is expanded to a multi-cycle generalized Weng model to better reflect the multi-cycle phenomena caused by political, economic and technological factors. This is used to forecast global oil production based on parameter selection from a large sample, depletion rate of remaining resources, constraints on oil reserves and cycle number determination. This research suggests that the world will reach its peak oil production in 2022, at about 4340×10~6 tonnes. China needs to plan for oil import diversity, a domestic oil production structure based on the supply pattern of large oil suppliers worldwide and the oil demand for China's own development.展开更多
This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adap...This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect.展开更多
We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties....We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties. In the first pollution scenario, the oil product was introduced into wet river sand, and in the second case, dry sand was contaminated by the oil product and was then moistened with water. By considering these two scenarios as multicomponent dispersion systems with varying degrees of contamination and humidity, and by using a polystructural granular model with pore spaces and closed inclusions, we calculated that the heat conductivity of the sandy soil increased under the first pollution scenario and decreased under the second, but the change in the volumetric heat capacity of the sandy soil was proportional only to the amount of oil pollution, not the manner in which it was introduced. We also determined the temperature dependencies of these two thermophysical properties of sandy soil when polluted by oil, of which information will be useful for future containment and remediation of oil-contaminated soil.展开更多
A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media....A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.展开更多
The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials...The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials,oil/gas production technology,and data/achievements sharing.It is recognized that the shale oil and gas exploitation in China is weak in seven aspects:understanding of flow regimes,producing of oil/gas reserves,monitoring of complex fractures,repeated stimulation technology,oil/gas production technology,casing deformation prevention technology,and wellbore maintenance technology.Combined with the geological and engineering factors of shale oil and gas in China,the development suggestions of four projects are proposed from the macro-and micro-perspective,namely,basic innovation project,exploitation technology project,oil/gas production stabilization project,and supporting efficiency-improvement project,so as to promote the rapid,efficient,stable,green and extensive development of shale oil and gas industry chain and innovation chain and ultimately achieve the goal of“oil volume stabilizing and gas volume increasing”.展开更多
In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil fl...In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil flow rates of the wells in a given oil reservoir,subject to a number of constraints such as minimum up/down time limits and well grouping.The problem was formulated as a mixed integer nonlinear programming model that minimized the total production operating cost and start-up cost.Due to the NP-hardness of the problem,an improved particle swarm optimization(PSO) algorithm with a new velocity updating formula was developed to solve the problem approximately.Computational experiments on randomly generated instances were carried out to evaluate the performance of the model and the algorithm's effectiveness.Compared with the commercial solver CPLEX,the improved PSO can obtain high-quality schedules within a much shorter running time for all the instances.展开更多
In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the di...In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the distribution of remaining oil horizontal wells have been given full play to stabilizing oil production and controlling water cut, reducing the producing pressure drop, improving well productivity and other advantages, and the development and deployment has been optimized; horizontal wells have been applied to solve problems such as old well casing damages, shutting down wells, low-productivity and low- efficiency wells, and high water cut wells to improve the utilization rate of old wells; through separate layer system improved injection production pattern, adjustment wells have been optimized and deployed, and part measures wells have been preferably selected to tap the residual oil improve the degree of reserves control realize the stabilization of oil production and control of water cut in an old oilfield, and further improve the development effects.展开更多
The internal turret mooring system for oil production storage vessels is a developing type ofoffshore floating production system suitable for deep water and harsh environmental application. In this paper, some achieve...The internal turret mooring system for oil production storage vessels is a developing type ofoffshore floating production system suitable for deep water and harsh environmental application. In this paper, some achievements in our research work are presented. The description includes: dynamic analysis of mooring system, research on performance of turret assembly, influence of vessel dimensions and hull forms on mooring performance, model tests under combined action of environmental forces in basin, and hull structural strength analysis.展开更多
Oil is extremely crucial to the development of the modern economy. It is important to forecast the oil supply capacity due to its scarcity and non-renewability. This paper attempts to forecast and analyze thirty-five ...Oil is extremely crucial to the development of the modern economy. It is important to forecast the oil supply capacity due to its scarcity and non-renewability. This paper attempts to forecast and analyze thirty-five current and potential net oil-exporting countries. Integrating both qualitative and quantitative methods, the oil production and consumption are predicted based on historical data, so that the world net oil-exporting capacity can be obtained. The results show that the "roof effect" of the world net oil-exporting capacity may appear before 2030. Unconventional oil will play an important role in the future world oil market. The competition and cooperation relationships between OPEC and non-OPEC will last for a long time.展开更多
In this paper, a FCC co-catalyst for enhancing the light oil production was prepared by the sol-gel method, and its effect on the performance of residue cracking catalysts was evaluated in a CCFFB reactor. The test re...In this paper, a FCC co-catalyst for enhancing the light oil production was prepared by the sol-gel method, and its effect on the performance of residue cracking catalysts was evaluated in a CCFFB reactor. The test results indicated that the liquid product yield increased obviously, after the surface of FCC equilibrium catalyst was impregnated with the co-catalyst. The yields of dry gas, slurry and coke decreased, while the diesel yield changed slightly. And the crackability of residue was increased; the rate of coke deposition on catalyst surface was decreased, with the thermal cracking reactions inhibited. All these results showed that the co-catalyst could improve the density of acid sites and change the catalyst acidity, which could promote to prolong the catalyst activity by depositing the co-catalyst on the surface of FCC equilibrium catalysts.展开更多
A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porou...A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porous media. Some techniques, e.g., the calculus of variations, the energy analysis method, the commutativity of the products of difference operators, the decomposition of high-order difference operators, and the theory of a priori estimate, are introduced. An optimal order error estimate in the l2 norm is derived. The method is successfully used in the numerical simulation of the enhanced oil production in actual oilfields. The simulation results are satisfactory and interesting.展开更多
The author used two common methods in this industry, i. e. the "Consumption Coefficient Method" and the "Elasticity Coefficient Trend Method", to forecast the refined oil product demand in 2010. Through analyzing ...The author used two common methods in this industry, i. e. the "Consumption Coefficient Method" and the "Elasticity Coefficient Trend Method", to forecast the refined oil product demand in 2010. Through analyzing and comparing the two forecast results, it is projected that the demand for finished product oils in 2010 will be in the range of 220 to 240 million tons a year. In addition, out of concern about the total oil products consumption to exceed 600 million tons/year in 2020, the author puts forward suggestions and measures aimed at conservation of oil products and application of alternative fuels.展开更多
基金supported by the State of Texas Advanced Resource Recovery(STARR)programthe Bureau of Economic Geology's Tight Oil Resource Assessment(TORA)Mudrock Systems Research Laboratory(MSRL)consortia。
文摘We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.
文摘This study investigates the optical properties of sesame oil from traditional and industrial sources using a custom-designed semiconductor laser spectrometer, UV-Vis spectroscopy, and FTIR spectroscopy. Six samples were collected from traditional presses and factories in Khartoum State and White Nile State. The spectrometer, constructed with a 680 nm semiconductor laser and various resistor values, measured the absorbance of sesame oil samples. UV-Vis spectroscopy identified absorbance peaks at 670 nm and 417 nm, corresponding to chlorophyll a and b. FTIR analysis showed nearly identical spectra among the samples, indicating similar chemical compositions. Laser spectrometer analysis revealed specific absorbance values for each sample. The results highlight the feasibility of using a 680 nm semiconductor laser for analyzing sesame oil, providing a cost-effective alternative to other wavelengths. This study demonstrates the potential of integrating traditional methods with modern spectroscopic techniques for the quality assessment of sesame oil.
基金part of the Program of"Study on the mechanism of complex heat and mass transfer during batch transport process in products pipelines"funded under the National Natural Science Foundation of China(grant number 51474228)
文摘Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.
基金partially supported by the National Natural Science Foundation of China (51874325)the Science Foundation of China University of PetroleumBeijing (2462021BJRC009)。
文摘This paper intends to complete the primary logistics planning of oil products under the imbalance of supply and demand. An integrated mathematical programming model is developed to simultaneously find the balance between supply and demand, and optimize the logistics scheme. The model takes minimum logistics cost and resource adjustment cost as the objective function, and takes supply and demand capacity, transportation capacity, mass balance, and resource adjustment rules as constraints.Three adjustment rules are considered in the model, including resource adjustment within oil suppliers,within oil consumers, and between oil consumers. The model is tested on a large-scale primary logistics of a state-owned petroleum enterprise, involving 37 affiliated refineries, 31 procurement departments,286 market depots and dedicated consumers. After the unified optimization, the supply and demand imbalance is eased by 97% and the total cost is saved by 7%, which proves the effectiveness and applicability of the proposed model.
基金supported by the National Natural Science Foundation of China(72088101 and 42090025)the China National Petroleum Corporation(2019E-26 and YGJ2020-3)。
文摘The clay mineral content of Daqing Gulong shale is in the range of about 35%–45%,with particle sizes less than 0.0039 mm.The horizontal fluidity of oil in Gulong shale is poor,with near-zero vertical flowability.As a result,Gulong shale has been considered to lack commercial value.In recent years,however,interdisciplinary research in geoscience,percolation mechanics,thermodynamics,and surface mechanics has demonstrated that Gulong shale oil has a high degree of maturity and a high residual hydrocarbon content.The expulsion efficiency of Gulong shale in the high mature stage is 32%–48%.Favorable storage spaces in Gulong shale include connecting pores and lamellar fractures developed between and within organic matter and clay mineral complexes.The shale oil mainly occurs in micro-and nano-pores,bedding fractures,and lamellar fractures,with a high gas–oil ratio and medium–high movable oil saturation.Gulong shale has the characteristics of high hardness,a high elastic modulus,and high fracture toughness.This study achieves breakthroughs in the exploration and development of Gulong shale,including the theories of hydrocarbon generation and accumulation,the technologies of mobility and fracturing,and recoverability.It confirms the major transition of Gulong shale from oil generation to oil production,which has extremely significant scientific value and application potential for China’s petroleum industry.
基金supported by the National Natural Science Foundation of China (Grant No. 4060201640773032)the National Basic Research Program of China (Contract No. 2007CB209500)
文摘The distribution and treatment of harmful gas (H2S) in the Liaohe Oilfield, Northeast China, were investigated in this study. It was found that abundant toxic gas (H2S) is generated in thermal recovery of heavy oil. The H2S gas is mainly formed during thermochemical sulfate reduction (TSR) occurring in oil reservoirs or the thermal decomposition of sulfocompounds (TDS) in crude oil. H2S generation is controlled by thermal recovery time, temperature and the injected chemical compounds. The quantity of SO4^2- in the injected compounds is the most influencing factor for the rate of TSR reaction. Therefore, for prevention of H2S formation, periodic and effective monitoring should be undertaken and adequate H2S absorbent should also be provided during thermal recovery of heavy oil. The result suggests that great efforts should be made to reduce the SO4^2- source in heavy oil recovery, so as to restrain H2S generation in reservoirs. In situ burning or desulfurizer adsorption are suggested to reduce H2S levels. Prediction and prevention of H2S are important in heavy oil production. This will minimize environmental and human health risks, as well as equipment corrosion.
基金Supported by the Basic Science Center Project of National Natural Science Foundation of China(72088101)National Natural Science Funded Project(52074345)CNPC Scientific Research and Technology Development Project(2020D-5001-21)。
文摘This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry.
文摘The structural changes brought about by shale oil revolution have inspired this paper of which the aim is to analyze the potential asymmetries related to the determinants of crude oil production in the USA.Thus,using a Markov-switching dynamic regression model in which parameters change when oil production moves from one regime to the other,it is found that for both oil production and oil relative importance,the regime that was dominant during the 1980s and the early 1990s when oil production in the USA was substantially high is the same regime that has once again become dominant in the decade corresponding to the shale oil revolution.Furthermore,the study reveals the existence of asymmetries in the relationship between US crude oil production and both manufacturing production and the consumer price index.Asymmetries are also found in the relationship between the relative importance US crude oil and manufacturing production.Finally,it is found that the intercept and the variance parameter also vary from one regime to the other,thus justifying the use of regime-dependent models.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 71303258, 71373285, and 71503264)National Social Science Funds of China (13&ZD159)+1 种基金MOE (Ministry of Education in China) Project of Humanities and Social Sciences (13YJC630148, 15YJC630121)Science Foundation of China University of Petroleum, Beijing (ZX20150130)
文摘Low oil prices under the influence of economic structure transformation and slow economic growth have hit the existing markets of traditional big oil suppliers and upgraded the conflict of oil production capacity and interest between OPEC producers and other big oil supplier countries such as the USA and Russia. Forecasting global oil production is significant for all countries for energy strategy planning, although many past forecasts have later been proved to be very seriously incorrect. In this paper,the original generalized Weng model is expanded to a multi-cycle generalized Weng model to better reflect the multi-cycle phenomena caused by political, economic and technological factors. This is used to forecast global oil production based on parameter selection from a large sample, depletion rate of remaining resources, constraints on oil reserves and cycle number determination. This research suggests that the world will reach its peak oil production in 2022, at about 4340×10~6 tonnes. China needs to plan for oil import diversity, a domestic oil production structure based on the supply pattern of large oil suppliers worldwide and the oil demand for China's own development.
基金Supported by the National Key Research and Development Program of China(2018YFE0196000)National Science and Technology Major Project of China(2016ZX05010-006)CNPC Scientific Research and Technical Development Project(2019B-4113)
文摘This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect.
文摘We analyzed the heat conductivity and volumetric heat capacity of sandy soil contaminated in two scenarios of oil pollution, and also determined the temperature dependencies of these changed thermophysical properties. In the first pollution scenario, the oil product was introduced into wet river sand, and in the second case, dry sand was contaminated by the oil product and was then moistened with water. By considering these two scenarios as multicomponent dispersion systems with varying degrees of contamination and humidity, and by using a polystructural granular model with pore spaces and closed inclusions, we calculated that the heat conductivity of the sandy soil increased under the first pollution scenario and decreased under the second, but the change in the volumetric heat capacity of the sandy soil was proportional only to the amount of oil pollution, not the manner in which it was introduced. We also determined the temperature dependencies of these two thermophysical properties of sandy soil when polluted by oil, of which information will be useful for future containment and remediation of oil-contaminated soil.
基金supported by the Major State Basic Research Development Program of China(G19990328)National Tackling Key Program(2011ZX05011-004+6 种基金2011ZX0505220050200069)National Natural Science Foundation of China(11101244112712311077112410372052)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘A kind of second-order implicit fractional step characteristic finite difference method is presented in this paper for the numerically simulation coupled system of enhanced (chemical) oil production in porous media. Some techniques, such as the calculus of variations, energy analysis method, commutativity of the products of difference operators, decomposition of high-order difference operators and the theory of a priori estimates are introduced and an optimal order error estimates in l^2 norm is derived. This method has been applied successfully to the numerical simulation of enhanced oil production in actual oilfields, and the simulation results ate quite interesting and satisfactory.
基金Supported by the CNPC Basic and Prospective Project (2021DJ45)。
文摘The shale oil and gas exploitation in China is technically benchmarked with the United States in terms of development philosophy,reservoir stimulation treatment,fracturing parameters,fracturing equipment and materials,oil/gas production technology,and data/achievements sharing.It is recognized that the shale oil and gas exploitation in China is weak in seven aspects:understanding of flow regimes,producing of oil/gas reserves,monitoring of complex fractures,repeated stimulation technology,oil/gas production technology,casing deformation prevention technology,and wellbore maintenance technology.Combined with the geological and engineering factors of shale oil and gas in China,the development suggestions of four projects are proposed from the macro-and micro-perspective,namely,basic innovation project,exploitation technology project,oil/gas production stabilization project,and supporting efficiency-improvement project,so as to promote the rapid,efficient,stable,green and extensive development of shale oil and gas industry chain and innovation chain and ultimately achieve the goal of“oil volume stabilizing and gas volume increasing”.
基金Supported by National High Technology Research and Development Program of China(2013AA040704)the Fund for the National Natural Science Foundation of China(61374203)
文摘In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil flow rates of the wells in a given oil reservoir,subject to a number of constraints such as minimum up/down time limits and well grouping.The problem was formulated as a mixed integer nonlinear programming model that minimized the total production operating cost and start-up cost.Due to the NP-hardness of the problem,an improved particle swarm optimization(PSO) algorithm with a new velocity updating formula was developed to solve the problem approximately.Computational experiments on randomly generated instances were carried out to evaluate the performance of the model and the algorithm's effectiveness.Compared with the commercial solver CPLEX,the improved PSO can obtain high-quality schedules within a much shorter running time for all the instances.
文摘In this paper, by in-depth geological research of Kalamkas Oilfield in Central Asia, the geological body has been re-ascertained; combined with fine study of reservoir engineering, based on the understanding of the distribution of remaining oil horizontal wells have been given full play to stabilizing oil production and controlling water cut, reducing the producing pressure drop, improving well productivity and other advantages, and the development and deployment has been optimized; horizontal wells have been applied to solve problems such as old well casing damages, shutting down wells, low-productivity and low- efficiency wells, and high water cut wells to improve the utilization rate of old wells; through separate layer system improved injection production pattern, adjustment wells have been optimized and deployed, and part measures wells have been preferably selected to tap the residual oil improve the degree of reserves control realize the stabilization of oil production and control of water cut in an old oilfield, and further improve the development effects.
基金Project supported by special scientific research foundation for doctoral subjects
文摘The internal turret mooring system for oil production storage vessels is a developing type ofoffshore floating production system suitable for deep water and harsh environmental application. In this paper, some achievements in our research work are presented. The description includes: dynamic analysis of mooring system, research on performance of turret assembly, influence of vessel dimensions and hull forms on mooring performance, model tests under combined action of environmental forces in basin, and hull structural strength analysis.
基金support from Key Projects of Philosophy and Social Sciences Research of Ministry of Education(09JZD0038)
文摘Oil is extremely crucial to the development of the modern economy. It is important to forecast the oil supply capacity due to its scarcity and non-renewability. This paper attempts to forecast and analyze thirty-five current and potential net oil-exporting countries. Integrating both qualitative and quantitative methods, the oil production and consumption are predicted based on historical data, so that the world net oil-exporting capacity can be obtained. The results show that the "roof effect" of the world net oil-exporting capacity may appear before 2030. Unconventional oil will play an important role in the future world oil market. The competition and cooperation relationships between OPEC and non-OPEC will last for a long time.
文摘In this paper, a FCC co-catalyst for enhancing the light oil production was prepared by the sol-gel method, and its effect on the performance of residue cracking catalysts was evaluated in a CCFFB reactor. The test results indicated that the liquid product yield increased obviously, after the surface of FCC equilibrium catalyst was impregnated with the co-catalyst. The yields of dry gas, slurry and coke decreased, while the diesel yield changed slightly. And the crackability of residue was increased; the rate of coke deposition on catalyst surface was decreased, with the thermal cracking reactions inhibited. All these results showed that the co-catalyst could improve the density of acid sites and change the catalyst acidity, which could promote to prolong the catalyst activity by depositing the co-catalyst on the surface of FCC equilibrium catalysts.
基金Project supported by the Major State Basic Research Development Program of China(No.G19990328)the National Natural Science Foundation of China(Nos.10771124,10372052,and 11101244)+2 种基金the National Tackling Key Problems Program of China(Nos.2011ZX05011-004,2011ZX05052,and 2005020069)the Doctorate Foundation of the Ministry of Education of China(No.20030422047)the Natural Science Foundation of Shandong Province of China(No.ZR2011AM015)
文摘A kind of second-order implicit upwind fractional step finite difference methods are presented for the numerical simulation of coupled systems for enhanced (chemical) oil production with capillary force in the porous media. Some techniques, e.g., the calculus of variations, the energy analysis method, the commutativity of the products of difference operators, the decomposition of high-order difference operators, and the theory of a priori estimate, are introduced. An optimal order error estimate in the l2 norm is derived. The method is successfully used in the numerical simulation of the enhanced oil production in actual oilfields. The simulation results are satisfactory and interesting.
文摘The author used two common methods in this industry, i. e. the "Consumption Coefficient Method" and the "Elasticity Coefficient Trend Method", to forecast the refined oil product demand in 2010. Through analyzing and comparing the two forecast results, it is projected that the demand for finished product oils in 2010 will be in the range of 220 to 240 million tons a year. In addition, out of concern about the total oil products consumption to exceed 600 million tons/year in 2020, the author puts forward suggestions and measures aimed at conservation of oil products and application of alternative fuels.