The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new gener...The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new generation of green additives. Graphene oxide(GO) consists of only C, H and O and thus is considered to be environmentally friendly. So the tribological properties of the few-layer GO sheet as an additive in hydrocarbon base oil are investigated systematically. It is found that, with the addition of GO sheets, both the coefficient of friction(COF) and wear are decreased and the working temperature range of the lubricant is expanded in the positive direction. Moreover, GO sheets has better performance under higher sliding speed and the optimized concentration of GO sheets is determined to be 0.5wt%. After rubbing, GO is detected on the wear scars through Raman spectroscopy. And it is believed that, during the rubbing, GO sheets adhere to the sliding surfaces, behaving like protective films and preventing the sliding surfaces from contacting with each other directly. This paper proves that the GO sheet is an effective lubricant additive, illuminates the lubrication mechanism, and provides some critical parameters for the practical application of GO sheets in lubrication.展开更多
1 Introduction Yanchang Formation in Upper Triassic,Ordos basin contains the most abundant hydrocarbon resources in North China(Wang et al.,2014).The sandstones are the most important oil-bearing reservoirs in Yanchang
In the present study the effects of ultrasonic pretreatment and the types of enzyme on oil yield were investigated.The optimum ultrasonic pretreatment parameters were found to be 250 W of ultrasonic power,30 min of ul...In the present study the effects of ultrasonic pretreatment and the types of enzyme on oil yield were investigated.The optimum ultrasonic pretreatment parameters were found to be 250 W of ultrasonic power,30 min of ultrasonic time,and 50℃of ultrasonic temperature.Five types of enzyme,Cellulase,Viscozyme L,Alcalase 2.4L,Protex 6L,and Protex 7L,were evaluated for their effectiveness in releasing oil from ultrasonic pretreated perilla seeds.The highest oil yield of 81.74%was observed in cellulase treated perilla seed samples.The physicochemical properties of the control,hexane,and enzyme extracted perilla seed oils were compared.No significant(P>0.05)differences were observed in iodine value,refractive index,unsaponifiable matter,saponification value,peroxide value,and acid value.展开更多
The effect of mineral oil on the mechanical properties and fractographs of Fe3(Al,Cr,Zr) in termetallic alloy has been investigated. The results show that the tensile ductility of the Fe3(Al,Cr,Zr) alloy tested in oil...The effect of mineral oil on the mechanical properties and fractographs of Fe3(Al,Cr,Zr) in termetallic alloy has been investigated. The results show that the tensile ductility of the Fe3(Al,Cr,Zr) alloy tested in oil is comparable with the results obtained in oxygen and is in sensitive to strain rate. The fracture mode of the Fe3(Al,Cr,Zr) alloy treated at 700℃/1.5 h and tested in oil, is cleavage and with dimples in some areas.展开更多
A calcium shellac (CS) matrix was used to encapsulate polymeric melamine formaldehyde microcapsules (A) or CaCO3 nanoparticles-stabilized microcapsules (B), both of which encapsulated an oil-based active ingredi...A calcium shellac (CS) matrix was used to encapsulate polymeric melamine formaldehyde microcapsules (A) or CaCO3 nanoparticles-stabilized microcapsules (B), both of which encapsulated an oil-based active ingredient, producing A-CS or B-CS composite microcapsules. The mechanical properties and oil release profiles of the composite microcapsules were evaluated. The composite microcapsules showed enhanced mechanical stability and reduced leakage of the active ingredient hv one order of magnitude.展开更多
The objective of this research was to develop a novel self-lubricating coating on an AA6061 aluminum alloy.Three coatings were prepared by the plasma electrolytic oxidation(PEO) process using 50-, 500-, and 1000-Hz ...The objective of this research was to develop a novel self-lubricating coating on an AA6061 aluminum alloy.Three coatings were prepared by the plasma electrolytic oxidation(PEO) process using 50-, 500-, and 1000-Hz pulsed direct current, respectively. The as-deposited coatings were then post-treated using two different methods, viz., ultrasonic vibration-aided vacuum oil impregnation(UVOI) and oil impregnation under ambient pressure(OIAP). After posttreatment, an oil-containing, self-lubricating top layer was formed on the coatings. The effects of the coatings' surface morphologies and structures on their oil-holding capabilities were discussed. The results revealed that coatings prepared with higher frequency had a greater oil-holding capacity using OIAP post-treatment, while those prepared with lower frequency had a greater oil-containing capability using UVOI post-treatment. These phenomena are related to the morphologies of the coatings produced with various current modes. The tribological properties of the coatings before and after post-treatments were investigated by pin-on-disc sliding wear tests. Due to the formation of a lubricant-containing top layer, the post-treatment coatings had a lower friction coefficient and improved wear resistance compared with the asdeposited coatings. In addition, the coatings after UVOI treatment had better wear performance than those post-treated using the OIAP process. Among all coatings, the coating produced with a 50-Hz pulsed current followed by UVOI posttreatment achieved the lowest friction coefficient(0.03) and best wear resistance when sliding against a Si3N4 ceramic counterface. This study indicates that a novel self-lubricating coating can be prepared by a PEO process combined with vacuum oil impregnation post-treatment.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51335005,51321092)National Key Basic Research Program of China(973 Program,Grant No.2013CB934200)the Foundation for the Supervisor of Beijing Excellent Doctoral Dissertation(Grant No.20111000305)
文摘The performance of a lubricant largely depends on the additives it involves. However, currently used additives cause severe pollution if they are burned and exhausted. Therefore, it is necessary to develop a new generation of green additives. Graphene oxide(GO) consists of only C, H and O and thus is considered to be environmentally friendly. So the tribological properties of the few-layer GO sheet as an additive in hydrocarbon base oil are investigated systematically. It is found that, with the addition of GO sheets, both the coefficient of friction(COF) and wear are decreased and the working temperature range of the lubricant is expanded in the positive direction. Moreover, GO sheets has better performance under higher sliding speed and the optimized concentration of GO sheets is determined to be 0.5wt%. After rubbing, GO is detected on the wear scars through Raman spectroscopy. And it is believed that, during the rubbing, GO sheets adhere to the sliding surfaces, behaving like protective films and preventing the sliding surfaces from contacting with each other directly. This paper proves that the GO sheet is an effective lubricant additive, illuminates the lubrication mechanism, and provides some critical parameters for the practical application of GO sheets in lubrication.
基金financially supported by the National Natural Science Foundation of China (grant No. 41272115)
文摘1 Introduction Yanchang Formation in Upper Triassic,Ordos basin contains the most abundant hydrocarbon resources in North China(Wang et al.,2014).The sandstones are the most important oil-bearing reservoirs in Yanchang
基金the support for this work by the National Hightech R&D Program of China(863 Program)(research grant number 2013AA102104)the National Natural Science Foundation of China(research grant number 31071493)+1 种基金the China Postdoctoral Science Foundation(research grant number 2012M511433)the Northeast Agricultural University,and the National Research Center of Soybean Engineering and Technology
文摘In the present study the effects of ultrasonic pretreatment and the types of enzyme on oil yield were investigated.The optimum ultrasonic pretreatment parameters were found to be 250 W of ultrasonic power,30 min of ultrasonic time,and 50℃of ultrasonic temperature.Five types of enzyme,Cellulase,Viscozyme L,Alcalase 2.4L,Protex 6L,and Protex 7L,were evaluated for their effectiveness in releasing oil from ultrasonic pretreated perilla seeds.The highest oil yield of 81.74%was observed in cellulase treated perilla seed samples.The physicochemical properties of the control,hexane,and enzyme extracted perilla seed oils were compared.No significant(P>0.05)differences were observed in iodine value,refractive index,unsaponifiable matter,saponification value,peroxide value,and acid value.
文摘The effect of mineral oil on the mechanical properties and fractographs of Fe3(Al,Cr,Zr) in termetallic alloy has been investigated. The results show that the tensile ductility of the Fe3(Al,Cr,Zr) alloy tested in oil is comparable with the results obtained in oxygen and is in sensitive to strain rate. The fracture mode of the Fe3(Al,Cr,Zr) alloy treated at 700℃/1.5 h and tested in oil, is cleavage and with dimples in some areas.
文摘A calcium shellac (CS) matrix was used to encapsulate polymeric melamine formaldehyde microcapsules (A) or CaCO3 nanoparticles-stabilized microcapsules (B), both of which encapsulated an oil-based active ingredient, producing A-CS or B-CS composite microcapsules. The mechanical properties and oil release profiles of the composite microcapsules were evaluated. The composite microcapsules showed enhanced mechanical stability and reduced leakage of the active ingredient hv one order of magnitude.
基金financially supported by the National Natural Science Foundation of China (No. 51301153)the National Undergraduate Training Programs for Innovation and Entrepreneurship of China (201410345022)
文摘The objective of this research was to develop a novel self-lubricating coating on an AA6061 aluminum alloy.Three coatings were prepared by the plasma electrolytic oxidation(PEO) process using 50-, 500-, and 1000-Hz pulsed direct current, respectively. The as-deposited coatings were then post-treated using two different methods, viz., ultrasonic vibration-aided vacuum oil impregnation(UVOI) and oil impregnation under ambient pressure(OIAP). After posttreatment, an oil-containing, self-lubricating top layer was formed on the coatings. The effects of the coatings' surface morphologies and structures on their oil-holding capabilities were discussed. The results revealed that coatings prepared with higher frequency had a greater oil-holding capacity using OIAP post-treatment, while those prepared with lower frequency had a greater oil-containing capability using UVOI post-treatment. These phenomena are related to the morphologies of the coatings produced with various current modes. The tribological properties of the coatings before and after post-treatments were investigated by pin-on-disc sliding wear tests. Due to the formation of a lubricant-containing top layer, the post-treatment coatings had a lower friction coefficient and improved wear resistance compared with the asdeposited coatings. In addition, the coatings after UVOI treatment had better wear performance than those post-treated using the OIAP process. Among all coatings, the coating produced with a 50-Hz pulsed current followed by UVOI posttreatment achieved the lowest friction coefficient(0.03) and best wear resistance when sliding against a Si3N4 ceramic counterface. This study indicates that a novel self-lubricating coating can be prepared by a PEO process combined with vacuum oil impregnation post-treatment.