For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow ...For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.展开更多
Gas cap blow down strategy is normally deployed for Ultra-thin oil rim reservoirs with huge gas caps due to extremely high gas oil ratios from wells in such reservoirs.The current state leads to loss of production fro...Gas cap blow down strategy is normally deployed for Ultra-thin oil rim reservoirs with huge gas caps due to extremely high gas oil ratios from wells in such reservoirs.The current state leads to loss of production from the oil reserves due to high initial reservoir pressure thus,reducing its net present value.Data on important factors essential to the productivity of oil rim reservoirs are used to build a heterogeneous ultra-thin reservoir with a time step of 10,000 days using the Eclipse software and its embedded correlations.The reservoir is subjected to a gas cap blowdown via a gas well,then an oil well is initiated into the model at onset and after time periods of 2000 days,4000 days,6000 days and 8000 days to estimate the oil recovery.It is expected that due to the large nature of the gas cap,pressure decline will be drastic and leading to a low oil recovery,hence the injection of water and gas at different rates at the periods indicated.The results indicate an oil recovery of 4.3%during gas cap blow down and 10.34%at 6000 days.Peak oil recoveries of 12.64%and 10.80%are estimated under 30,000 Mscf/day at 4000 days and 1000 stb/day at 6000 days respectively.This shows an incremental oil recovery of 8.34%and 6.5%over that recorded during gas cap blow down.The results also indicate that the gas production at those periods was not greatly affected with an estimated increment of 257 Bscf recorded during 30,000 Mscf/day at 4000 days.All secondary injection schemes at the respective time steps had positive impact on the overall oil recoveries.It is recommended that extra production and injection wells be drilled,enhanced oil recovery options and injection patterns be considered to further increase oil recovery.展开更多
文摘For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.
文摘Gas cap blow down strategy is normally deployed for Ultra-thin oil rim reservoirs with huge gas caps due to extremely high gas oil ratios from wells in such reservoirs.The current state leads to loss of production from the oil reserves due to high initial reservoir pressure thus,reducing its net present value.Data on important factors essential to the productivity of oil rim reservoirs are used to build a heterogeneous ultra-thin reservoir with a time step of 10,000 days using the Eclipse software and its embedded correlations.The reservoir is subjected to a gas cap blowdown via a gas well,then an oil well is initiated into the model at onset and after time periods of 2000 days,4000 days,6000 days and 8000 days to estimate the oil recovery.It is expected that due to the large nature of the gas cap,pressure decline will be drastic and leading to a low oil recovery,hence the injection of water and gas at different rates at the periods indicated.The results indicate an oil recovery of 4.3%during gas cap blow down and 10.34%at 6000 days.Peak oil recoveries of 12.64%and 10.80%are estimated under 30,000 Mscf/day at 4000 days and 1000 stb/day at 6000 days respectively.This shows an incremental oil recovery of 8.34%and 6.5%over that recorded during gas cap blow down.The results also indicate that the gas production at those periods was not greatly affected with an estimated increment of 257 Bscf recorded during 30,000 Mscf/day at 4000 days.All secondary injection schemes at the respective time steps had positive impact on the overall oil recoveries.It is recommended that extra production and injection wells be drilled,enhanced oil recovery options and injection patterns be considered to further increase oil recovery.