In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pi...In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies.展开更多
In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in t...In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in the lands, the technologies for the development of the offshore oil mining are particularly important. Among these problems, after the exploitation, the storage and transportation of the offshore oil and gas is worthy of the discussion of the technical personnel. From the experience of the oil and gas storage and transportation in the long years, in some environmentally degraded areas, there are problems in the efficiency and safety in the long pipeline transportation and the oil and gas mixed transportation, and in the transportation, there are also big shortcomings. In this paper, the author carries on the analysis of the existing questions encountering in our country's oil and gas storage and transportation~ and proposes the direction of the researches in the future oil and gas storage and transportation, and the purpose is to better improve the security of Cbina's oil and gas storage and transportation and to enhance the efficiency of the use of the oil and gas.展开更多
In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities...In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities safety courses in China University of Petroleum(Beijing)includes“Engineering mechanics”,“Strength design of pipelines and tanks”and“Safety and integrity management of oil and gas storage and transportation facilities”.The three courses lack relevance and the teaching mode is too rigid,resulting in students losing their initiative in learning.If students can’t use the knowledge flexibly,it will affect the achievement of the objectives of the training program.Therefore,oil and gas storage and transportation facilities safety courses are reformed,training plans are adjusted and teaching methods are improved.The practice shows that the reform enriches the teaching content,improves the teaching quality,stimulates classroom activity and gets a good evaluation of students.The reform of safety courses has a certain significance for cultivating compound talents who have the ability to solve practical problems in engineering.展开更多
Oil and gas transportation facilities are important for a country to secure an energy supply and maintain social stability and economic development.Social capitals in China are now encouraged by the government to inve...Oil and gas transportation facilities are important for a country to secure an energy supply and maintain social stability and economic development.Social capitals in China are now encouraged by the government to invest in the construction of oil and gas infrastructures in the country.With China's growing economy and new reforms in the oil and gas sector,more opportunities are available for private companies seeking to get involved in energy infrastructure.It is estimated that the future market of energy infrastructure projects in China is valued at nearly RMB 2 trillion.This paper is trying to offer some clues regarding investment in energy infrastructure in China by giving a brief introduction to the current situation of CNPC's oil and gas infrastructure construction.展开更多
Considering the development of potato (Solanum tuberosum) industry in China, the existing technologies of potato storage and transportation in the produc- ing area were analyzed through investigation on four main po...Considering the development of potato (Solanum tuberosum) industry in China, the existing technologies of potato storage and transportation in the produc- ing area were analyzed through investigation on four main potato production areas. Unear classification was used to conduct the technology classification. According to the technical attributes and characteristics, the potato technologies of storage and transportation in producing area were classified with large classes, middle classes, small classes and subclasses, into the agricultural production area processing and storage engineering technology system, to reveal the structure and functions. Mean- while, the widely used technologies were integrated and summarized into 5 principal technology integration programs, which could be used for the technology integration of the new management subjects such as planting professional cooperatives, family farms, enterprises and so on.展开更多
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume i...This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume in horizontal well fracturing.A numerical model is established to investigate the production rate,reservoir pressure field,and CO_(2)saturation distribution corresponding to changing time of CO_(2)flooding with radial borehole fracturing.A sensitivity analysis on the influence of CO_(2)injection location,layer spacing,pressure difference,borehole number,and hydraulic fractures on oil production and CO_(2)storage is conducted.The CO_(2)flooding process is divided into four stages.Reductions in layer spacing will significantly improve oil production rate and gas storage capacity.However,serious gas channeling can occur when the spacing is lower than 20 m.Increasing the pressure difference between the producer and injector,the borehole number,the hydraulic fracture height,and the fracture width can also increase the oil production rate and gas storage rate.Sensitivity analysis shows that layer spacing and fracture height greatly influence gas storage and oil production.Research outcomes are expected to provide a theoretical basis for the efficient development of shale oil reservoirs in the vertical direction.展开更多
The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable...The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale.展开更多
Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and ...Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs.展开更多
The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 hor...The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression.展开更多
Nowadays, we are in great lack of the technology theory for the storage and transportation of gas hydrate. Under this condition, after checking out related theory of these, we established the technology roadmap of the...Nowadays, we are in great lack of the technology theory for the storage and transportation of gas hydrate. Under this condition, after checking out related theory of these, we established the technology roadmap of the storage and transportation of gas hydrate by LNG technology. Study has shown that the technology of LNG is more saving than that of pipeline. Then we came out with the new idea of storage and transportation of hydrate by LNG technology.展开更多
Crude oil is a kind of water/oil emulsion, which the oil phase consists of organic molecules with different molecular weights such as alkanes, paraffin, asphaltene, and resins. Due to the change in physicochemical con...Crude oil is a kind of water/oil emulsion, which the oil phase consists of organic molecules with different molecular weights such as alkanes, paraffin, asphaltene, and resins. Due to the change in physicochemical conditions during the production, transportation, storage, and refining, heavier molecules can precipitate from crude oil. Thus, viscous sludge formed at the bottom of storage tanks can cause many problems including reduction of storage capacity of tank, oil contamination, corrosion, repair costs, environmental pollution, etc. The reduction of sludge viscosity can be achieved by reduction of its interfacial tension. In this study, different chemical and physical factors, influencing prepared emulsions(made of sludge, water and surfactant), such as surfactants, solvents, temperature, pressure, and mixing conditions were investigated. Results showed that non-ionic surfactants(like bitumen emulsifier), and solvents(such as mixed xylene, AW-400, and AW-402), injection of additives, applying pressure, and mixing operations had a positive effect on reduction of emulsion viscosity. All experiments were carried out with sludge obtained from crude oil storage tanks at Kharg Island,Iran.展开更多
The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this...The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this research,a novel surfactant,tri-triethanolamine monosunflower ester,was synthesized in the laboratory by extracting fatty acids present in sunflower(Helianthus annuus)oil.Synthesized surfactant was used to prepare oil-in-water emulsions of a heavy crude oil from the western oil field of India.After emulsification,a dramatic decrease in pour point as well as viscosity was observed.All the prepared emulsions were found to be flowing even at 1°C.The emulsion developed with 60%oil content and 2wt%surfactant showed a decrease in viscosity of 96%.The stability of the emulsion was investigated at different temperatures,and it was found to be highly stable.The effectiveness of surfactant in emulsifying the heavy oil in water was investigated by measuring the equilibrium interfacial tension(IFT)between the crude oil(diluted)and the aqueous phase along with zeta potential of emulsions.2wt%surfactant decreased IFT by almost nine times that of no surfactant.These results suggested that the synthesized surfactant may be used to prepare a stable oil-in-water emulsion for its transportation through offshore pipelines efficiently.展开更多
Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.Th...Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.This mechanism is considered as a reason for EOR.Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials.Generally,instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon.Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction.Therefore,higher in-situ water content can worsen this condition.Besides,this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion,which results in EOR reduction.On the other hand,from gas storage point of view,it should be noted that CO2 solubility is not the same in the water and oil phases.In this study for a specified water salinity,the effects of different connate water saturations(Swc)on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir.The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation,as 14%reduction of Swc resulted in 20%and 16%higher oil recovery and CO2 storage capacity,respectively.展开更多
A new method is proposed to analyze the pore-scale mechanisms and characterization of light oil storage in shale nanopores,which is based on the Hydrocarbon Vapor Adsorption(HVA)and Pore Calculation Model(PCM).First,t...A new method is proposed to analyze the pore-scale mechanisms and characterization of light oil storage in shale nanopores,which is based on the Hydrocarbon Vapor Adsorption(HVA)and Pore Calculation Model(PCM).First,the basic principle of the HVA-PCM method is introduced,and the experimental/mathematical analysis processes are given.Then,the HVA-PCM method is applied to shale samples to analyze the mechanisms and characterization of light oil storage in shale nanopores.The results provide insights into the pore-scale oil storage mechanisms,oil storage structure,oil film thickness,oil distribution within different sized pores,and the oil storage state.Finally,the advantages and limitations of the HVA-PCM method are discussed,and suggestions for further improvement are proposed.Overall,the HVA-PCM method is a powerful tool for extracting quantitative information on the light oil storage in shale nanopores.展开更多
Underground storage in rock caverns is widely used in Norway for many different petroleum products,such as crude oil,fuel,propane and butane.Basically,the caverns for such storages are unlined,i.e.containment is ensur...Underground storage in rock caverns is widely used in Norway for many different petroleum products,such as crude oil,fuel,propane and butane.Basically,the caverns for such storages are unlined,i.e.containment is ensured without using any steel lining or membrane.The main basis for the storage technology originates from the extensive hydropower development in Norway.As part of this activity,about 4500 km of tunnels and shafts have been excavated,and around 200 large powerhouse caverns have been constructed.The hydropower tunnels are mainly unlined,with hydrostatic water pressure on unlined rock of up to 1000 m.Some of the projects also include air cushion chambers with volumes of up to 1×10^(5)m^(3)and air pressure up to 7.7 MPa.Many lessons which are valuable also for underground oil and gas storage have been learnt from these projects.For a storage project to become successful,systematic,well planned design and ground investigation procedures are crucial.The main steps of the design procedure are first to define the optimum location of the project,and then to optimize orientation,shape/geometry and dimensions of caverns and tunnels.As part of the procedure,ground investigations have to be carried out at several steps integrated with the progress of design.The investigation and design procedures,and the great significance of these for the project to become successful will be discussed.Case examples of oil and gas storage in unlined rock caverns are given,illustrating the relevancy of experience from high-pressure hydropower projects for planning and design of unlined caverns for oil and gas storage.展开更多
Our research is centered on the Gandhar oil field, which was discovered in 1983, where daily oil production has declined significantly over the years. The primary objective was to evaluate the feasibility of carbon di...Our research is centered on the Gandhar oil field, which was discovered in 1983, where daily oil production has declined significantly over the years. The primary objective was to evaluate the feasibility of carbon dioxide(CO_(2)) storage through its injection into the siliciclastic reservoirs of Ankleshwar Formation. We aimed to obtain high-resolution acoustic impedance data to estimate porosity employing model-based poststack seismic inversion. We conducted an analysis of the density and effective porosity in the target zone through geostatistical techniques and probabilistic neural networks. Simultaneously, the work also involved geomechanical analysis through the computation of pore pressure and fracture gradient using well-log data, geological information, and drilling events in the Gandhar field. Our investigation unveiled spatial variations in effective porosity within the Hazad Member of the Ankleshwar Formation, with an effective porosity exceeding 25% observed in several areas, which indicates the presence of well-connected pore spaces conducive to efficient CO_(2) migration. Geomechanical analysis showed that the vertical stress(Sv) ranged from 55 MPa to 57 MPa in Telwa and from 63.7 MPa to 67.7 MPa in Hazad Member. The pore pressure profile displayed variations along the stratigraphic sequence, with the shale zone, particularly in the Kanwa Formation, attaining the maximum pressure gradient(approximately 36 MPa). However, consistently low pore pressure values(30-34 MPa) considerably below the fracture gradient curves were observed in Hazad Member due to depletion. The results from our analysis provide valuable insights into shaping future field development strategies and exploration of the feasibility of CO_(2) sequestration in Gandhar Field.展开更多
The features of acoustic bathymetry of sludge in crude oil tanks are considered. Different parameters of crude oil and sludge which are important for the selection of acoustic parameters such as sound speed, the acous...The features of acoustic bathymetry of sludge in crude oil tanks are considered. Different parameters of crude oil and sludge which are important for the selection of acoustic parameters such as sound speed, the acoustic impedances of “oil-sludge” boundaries and sound attenuation are analyzed and compared with experimental data. The main sources of errors of sludge volume estimation are discussed.展开更多
Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of f...Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of fue gas water-alternating gas(fue gas-WAG)injection after continuous waterfooding in an oil reservoir,a long core fooding system was built.The experimental results showed that the oil recovery factor of fue gas-WAG fooding was increased by 21.25%after continuous waterfooding and fue gas-WAG fooding could further enhance oil recovery and reduce water cut signifcantly.A novel material balance model based on storage mechanism was developed to estimate the multicomponent fue gas storage capacity and storage capacity of each component of fue gas in reservoir oil,water and as free gas in the post-waterfooding reservoir.The ultimate storage ratio of fue gas is 16%in the fue gas-WAG fooding process.The calculation results of fue gas storage capacity showed that the injection gas storage capacity mainly consists of N_(2) and CO_(2),only N_(2) exists as free gas phase in cores,and other components of injection gas are dissolved in oil and water.Finally,injection strategies from three perspectives for fue gas storage,EOR,and combination of fue gas storage and EOR were proposed,respectively.展开更多
文摘In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies.
文摘In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in the lands, the technologies for the development of the offshore oil mining are particularly important. Among these problems, after the exploitation, the storage and transportation of the offshore oil and gas is worthy of the discussion of the technical personnel. From the experience of the oil and gas storage and transportation in the long years, in some environmentally degraded areas, there are problems in the efficiency and safety in the long pipeline transportation and the oil and gas mixed transportation, and in the transportation, there are also big shortcomings. In this paper, the author carries on the analysis of the existing questions encountering in our country's oil and gas storage and transportation~ and proposes the direction of the researches in the future oil and gas storage and transportation, and the purpose is to better improve the security of Cbina's oil and gas storage and transportation and to enhance the efficiency of the use of the oil and gas.
文摘In recent years,the safety of oil and gas storage and transportation facilities has been paid more attention by the state and enterprises due to frequent accidents.The oil and gas storage and transportation facilities safety courses in China University of Petroleum(Beijing)includes“Engineering mechanics”,“Strength design of pipelines and tanks”and“Safety and integrity management of oil and gas storage and transportation facilities”.The three courses lack relevance and the teaching mode is too rigid,resulting in students losing their initiative in learning.If students can’t use the knowledge flexibly,it will affect the achievement of the objectives of the training program.Therefore,oil and gas storage and transportation facilities safety courses are reformed,training plans are adjusted and teaching methods are improved.The practice shows that the reform enriches the teaching content,improves the teaching quality,stimulates classroom activity and gets a good evaluation of students.The reform of safety courses has a certain significance for cultivating compound talents who have the ability to solve practical problems in engineering.
文摘Oil and gas transportation facilities are important for a country to secure an energy supply and maintain social stability and economic development.Social capitals in China are now encouraged by the government to invest in the construction of oil and gas infrastructures in the country.With China's growing economy and new reforms in the oil and gas sector,more opportunities are available for private companies seeking to get involved in energy infrastructure.It is estimated that the future market of energy infrastructure projects in China is valued at nearly RMB 2 trillion.This paper is trying to offer some clues regarding investment in energy infrastructure in China by giving a brief introduction to the current situation of CNPC's oil and gas infrastructure construction.
基金Supported by the National Key Research and Development Program of China(2016YFD0401301)~~
文摘Considering the development of potato (Solanum tuberosum) industry in China, the existing technologies of potato storage and transportation in the produc- ing area were analyzed through investigation on four main potato production areas. Unear classification was used to conduct the technology classification. According to the technical attributes and characteristics, the potato technologies of storage and transportation in producing area were classified with large classes, middle classes, small classes and subclasses, into the agricultural production area processing and storage engineering technology system, to reveal the structure and functions. Mean- while, the widely used technologies were integrated and summarized into 5 principal technology integration programs, which could be used for the technology integration of the new management subjects such as planting professional cooperatives, family farms, enterprises and so on.
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金This study has been funded by the National Science Fund for Distinguished Young Scholars(No.52204063)Science Foundation of China University of Petroleum,Beijing(No.2462023BJRC025).Moreover,we would like to express our heartfelt appreciation to the Computational Geosciences group in the Department of Mathematics and Cybernetics at SINTEF Digital for developing and providing the free open-source MATLAB Reservoir Simulation Toolbox(MRST)used in this research.
文摘This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume in horizontal well fracturing.A numerical model is established to investigate the production rate,reservoir pressure field,and CO_(2)saturation distribution corresponding to changing time of CO_(2)flooding with radial borehole fracturing.A sensitivity analysis on the influence of CO_(2)injection location,layer spacing,pressure difference,borehole number,and hydraulic fractures on oil production and CO_(2)storage is conducted.The CO_(2)flooding process is divided into four stages.Reductions in layer spacing will significantly improve oil production rate and gas storage capacity.However,serious gas channeling can occur when the spacing is lower than 20 m.Increasing the pressure difference between the producer and injector,the borehole number,the hydraulic fracture height,and the fracture width can also increase the oil production rate and gas storage rate.Sensitivity analysis shows that layer spacing and fracture height greatly influence gas storage and oil production.Research outcomes are expected to provide a theoretical basis for the efficient development of shale oil reservoirs in the vertical direction.
基金part of a research project PIF Alfa HI initiative 726174Alfaisal University and its Office of Research&Innovation for their continuous support throughout this study。
文摘The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-Major Project-Research on Tight Oil-Shale Oil Reservoir Engineering Methods and Key Technologies in Ordos Basin(No.ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015)。
文摘Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs.
基金Supported by Sinopec Key Science and Technology Research Project(P21060)。
文摘The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression.
文摘Nowadays, we are in great lack of the technology theory for the storage and transportation of gas hydrate. Under this condition, after checking out related theory of these, we established the technology roadmap of the storage and transportation of gas hydrate by LNG technology. Study has shown that the technology of LNG is more saving than that of pipeline. Then we came out with the new idea of storage and transportation of hydrate by LNG technology.
文摘Crude oil is a kind of water/oil emulsion, which the oil phase consists of organic molecules with different molecular weights such as alkanes, paraffin, asphaltene, and resins. Due to the change in physicochemical conditions during the production, transportation, storage, and refining, heavier molecules can precipitate from crude oil. Thus, viscous sludge formed at the bottom of storage tanks can cause many problems including reduction of storage capacity of tank, oil contamination, corrosion, repair costs, environmental pollution, etc. The reduction of sludge viscosity can be achieved by reduction of its interfacial tension. In this study, different chemical and physical factors, influencing prepared emulsions(made of sludge, water and surfactant), such as surfactants, solvents, temperature, pressure, and mixing conditions were investigated. Results showed that non-ionic surfactants(like bitumen emulsifier), and solvents(such as mixed xylene, AW-400, and AW-402), injection of additives, applying pressure, and mixing operations had a positive effect on reduction of emulsion viscosity. All experiments were carried out with sludge obtained from crude oil storage tanks at Kharg Island,Iran.
基金the Indian Institute of Technology (Indian School of Mines), Dhanbad for providing necessary laboratory facilities and financial support
文摘The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this research,a novel surfactant,tri-triethanolamine monosunflower ester,was synthesized in the laboratory by extracting fatty acids present in sunflower(Helianthus annuus)oil.Synthesized surfactant was used to prepare oil-in-water emulsions of a heavy crude oil from the western oil field of India.After emulsification,a dramatic decrease in pour point as well as viscosity was observed.All the prepared emulsions were found to be flowing even at 1°C.The emulsion developed with 60%oil content and 2wt%surfactant showed a decrease in viscosity of 96%.The stability of the emulsion was investigated at different temperatures,and it was found to be highly stable.The effectiveness of surfactant in emulsifying the heavy oil in water was investigated by measuring the equilibrium interfacial tension(IFT)between the crude oil(diluted)and the aqueous phase along with zeta potential of emulsions.2wt%surfactant decreased IFT by almost nine times that of no surfactant.These results suggested that the synthesized surfactant may be used to prepare a stable oil-in-water emulsion for its transportation through offshore pipelines efficiently.
文摘Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.This mechanism is considered as a reason for EOR.Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials.Generally,instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon.Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction.Therefore,higher in-situ water content can worsen this condition.Besides,this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion,which results in EOR reduction.On the other hand,from gas storage point of view,it should be noted that CO2 solubility is not the same in the water and oil phases.In this study for a specified water salinity,the effects of different connate water saturations(Swc)on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir.The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation,as 14%reduction of Swc resulted in 20%and 16%higher oil recovery and CO2 storage capacity,respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.41872124,1972132,42072174,41730421,and 41972132)the Open Foundation of provincial and ministerial Key Laboratory of China University of Geosciences(Beijing)(Grant No.20210104)。
文摘A new method is proposed to analyze the pore-scale mechanisms and characterization of light oil storage in shale nanopores,which is based on the Hydrocarbon Vapor Adsorption(HVA)and Pore Calculation Model(PCM).First,the basic principle of the HVA-PCM method is introduced,and the experimental/mathematical analysis processes are given.Then,the HVA-PCM method is applied to shale samples to analyze the mechanisms and characterization of light oil storage in shale nanopores.The results provide insights into the pore-scale oil storage mechanisms,oil storage structure,oil film thickness,oil distribution within different sized pores,and the oil storage state.Finally,the advantages and limitations of the HVA-PCM method are discussed,and suggestions for further improvement are proposed.Overall,the HVA-PCM method is a powerful tool for extracting quantitative information on the light oil storage in shale nanopores.
文摘Underground storage in rock caverns is widely used in Norway for many different petroleum products,such as crude oil,fuel,propane and butane.Basically,the caverns for such storages are unlined,i.e.containment is ensured without using any steel lining or membrane.The main basis for the storage technology originates from the extensive hydropower development in Norway.As part of this activity,about 4500 km of tunnels and shafts have been excavated,and around 200 large powerhouse caverns have been constructed.The hydropower tunnels are mainly unlined,with hydrostatic water pressure on unlined rock of up to 1000 m.Some of the projects also include air cushion chambers with volumes of up to 1×10^(5)m^(3)and air pressure up to 7.7 MPa.Many lessons which are valuable also for underground oil and gas storage have been learnt from these projects.For a storage project to become successful,systematic,well planned design and ground investigation procedures are crucial.The main steps of the design procedure are first to define the optimum location of the project,and then to optimize orientation,shape/geometry and dimensions of caverns and tunnels.As part of the procedure,ground investigations have to be carried out at several steps integrated with the progress of design.The investigation and design procedures,and the great significance of these for the project to become successful will be discussed.Case examples of oil and gas storage in unlined rock caverns are given,illustrating the relevancy of experience from high-pressure hydropower projects for planning and design of unlined caverns for oil and gas storage.
基金Supported by DST,Ministry of Science and Technology(Reference:DST/TMD/CCUS/Co E/2020/IITB (C))。
文摘Our research is centered on the Gandhar oil field, which was discovered in 1983, where daily oil production has declined significantly over the years. The primary objective was to evaluate the feasibility of carbon dioxide(CO_(2)) storage through its injection into the siliciclastic reservoirs of Ankleshwar Formation. We aimed to obtain high-resolution acoustic impedance data to estimate porosity employing model-based poststack seismic inversion. We conducted an analysis of the density and effective porosity in the target zone through geostatistical techniques and probabilistic neural networks. Simultaneously, the work also involved geomechanical analysis through the computation of pore pressure and fracture gradient using well-log data, geological information, and drilling events in the Gandhar field. Our investigation unveiled spatial variations in effective porosity within the Hazad Member of the Ankleshwar Formation, with an effective porosity exceeding 25% observed in several areas, which indicates the presence of well-connected pore spaces conducive to efficient CO_(2) migration. Geomechanical analysis showed that the vertical stress(Sv) ranged from 55 MPa to 57 MPa in Telwa and from 63.7 MPa to 67.7 MPa in Hazad Member. The pore pressure profile displayed variations along the stratigraphic sequence, with the shale zone, particularly in the Kanwa Formation, attaining the maximum pressure gradient(approximately 36 MPa). However, consistently low pore pressure values(30-34 MPa) considerably below the fracture gradient curves were observed in Hazad Member due to depletion. The results from our analysis provide valuable insights into shaping future field development strategies and exploration of the feasibility of CO_(2) sequestration in Gandhar Field.
文摘The features of acoustic bathymetry of sludge in crude oil tanks are considered. Different parameters of crude oil and sludge which are important for the selection of acoustic parameters such as sound speed, the acoustic impedances of “oil-sludge” boundaries and sound attenuation are analyzed and compared with experimental data. The main sources of errors of sludge volume estimation are discussed.
基金This work was supported by the Department of Science and Technology of Sichuan Province(2019YFG0457)the National Natural Science Foundation of China(5183000045)+1 种基金the National Major Science and Technology Project of CNPC"Research and Application of Key Technologies for Beneft Development of Volcanic Rock Reservoirs”(2017E-04-05)the PetroChina Major Science and Technology Project(2018E-1805).
文摘Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of fue gas water-alternating gas(fue gas-WAG)injection after continuous waterfooding in an oil reservoir,a long core fooding system was built.The experimental results showed that the oil recovery factor of fue gas-WAG fooding was increased by 21.25%after continuous waterfooding and fue gas-WAG fooding could further enhance oil recovery and reduce water cut signifcantly.A novel material balance model based on storage mechanism was developed to estimate the multicomponent fue gas storage capacity and storage capacity of each component of fue gas in reservoir oil,water and as free gas in the post-waterfooding reservoir.The ultimate storage ratio of fue gas is 16%in the fue gas-WAG fooding process.The calculation results of fue gas storage capacity showed that the injection gas storage capacity mainly consists of N_(2) and CO_(2),only N_(2) exists as free gas phase in cores,and other components of injection gas are dissolved in oil and water.Finally,injection strategies from three perspectives for fue gas storage,EOR,and combination of fue gas storage and EOR were proposed,respectively.