Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was stud...Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.展开更多
The present paper investigates the performance and combustion characteristic of single cylinder, natu-rally aspirated, water cooled, DI diesel engine running on karanja oil (K100) and blends with diesel K10, K15, and ...The present paper investigates the performance and combustion characteristic of single cylinder, natu-rally aspirated, water cooled, DI diesel engine running on karanja oil (K100) and blends with diesel K10, K15, and K20 and the experimental results were compared with that of diesel. The results showed that the fuel properties of K100, density, viscosity, flash point and carbon residue were found to be higher than that of diesel and calorific value is lower than that of diesel. Based on performance and combustion characteristics of the various blends, the optimum blend was found to be K15.展开更多
Experimental tests have been carried out to evaluate the performance,emission and combustion characteristics of a diesel engine using neat sea lemon oil and its blends of 25%,50%,&75%and standard diesel fuel separ...Experimental tests have been carried out to evaluate the performance,emission and combustion characteristics of a diesel engine using neat sea lemon oil and its blends of 25%,50%,&75%and standard diesel fuel separately.The common problems posed when using vegetable oil in a compression ignition engine are poor atomization,carbon deposits,ring sticking etc.This is because of the high viscosity and low volatility of vegetable oil.When blended with diesel,sea lemon oil presented lower viscosity,improved volatility,better combustion and less carbon deposit.It was found that there was reduction in NO for neat sea lemon oil and its diesel blends along with marginal increase in smoke,HC and CO emissions compared to that of standard diesel.Brake thermal efficiency was slightly lower for neat sea lemon oil and its diesel blends.From the combustion analysis,it was found that sea lemon oil-diesel blends performed better than neat sea lemon oil.展开更多
Biodiesel is derived from waste cooking oil (WCO) by transesterification. Methylester was prepared by mixing diesel and biodiesel oils as 20% by volume. Nano particles asTiO2, Al2O3 and CNTs were blended with biodiese...Biodiesel is derived from waste cooking oil (WCO) by transesterification. Methylester was prepared by mixing diesel and biodiesel oils as 20% by volume. Nano particles asTiO2, Al2O3 and CNTs were blended with biodiesel blend at different concentrations of 25,50, and 100 mg/l to enhance the physicochemical fuel characteristics to obtain clean and effi-cient combustion performance. An experimental setup was incorporated into a diesel engine toinvestigate the influence of these nano-materials on engine performance, exergy analysis, combustion characteristics and emissions using WCO biodiesel-diesel mixture. Enriching methylester mixture with 100 ppm titanium, alumina and CNTs (B20T100, B20A100 andB20C100) increased the thermal efficiency by 4%, 6% and 11.5%, respectively compared toB20. Biodiesel blending with nano additives B20T100, B20A100 and B20C100 decreasedthe emissions of CO (11%, 24% and 30%, respectively), HC (8%, 17% and 25%, respectively)and smoke (10%, 13% and 19%, respectively) compared to B20. However, the noticeable increase of NOx was estimated by 5%, 12% and 27% for B20T100, B20A100 and B20C100,respectively. Finally, the results showed the rise in peak cylinder pressure by 5%, 9% and 11% and increase in heat release rate by 4%, 8% and 13% for B20T100, B20A100 andB20C100, respectively. The fuel exergy of B20T100, B20A100 and B20C100 are lower thanbiodiesel blend B20 by 6.5%, 16% and 23% but the exergetic efficiency are increased by 7%,19% and 30% at full load about B20.展开更多
采用美国Perk in E lm er公司生产的Pyris1 TGA热重分析仪,对桦甸油页岩半焦进行燃烧特性试验研究,得到3种不同升温速率下的油页岩半焦燃烧特性曲线,并使用平均质量反应性指数和燃烧稳定性指数对半焦反应性加以评价。油页岩半焦燃烧分...采用美国Perk in E lm er公司生产的Pyris1 TGA热重分析仪,对桦甸油页岩半焦进行燃烧特性试验研究,得到3种不同升温速率下的油页岩半焦燃烧特性曲线,并使用平均质量反应性指数和燃烧稳定性指数对半焦反应性加以评价。油页岩半焦燃烧分燃烧快速段、过渡段和燃烧慢速段3个阶段进行。随着升温速率的提高,在燃烧快速段,表观活化能为133.901 3—100.204 2 kJ/mol;在燃烧慢速段,表观活化能为146.317 1—211.409 3 kJ/mol。利用Coats-Redfern法确定了燃烧快速段反应级数为3,而燃烧慢速段则为5.5,从而得到油页岩半焦燃烧化学反应的动力学参数,为油页岩半焦的有效开发与经济利用提供了理论依据。展开更多
基金Project CPEUKF08-04 support by the Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education of China
文摘Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.
文摘The present paper investigates the performance and combustion characteristic of single cylinder, natu-rally aspirated, water cooled, DI diesel engine running on karanja oil (K100) and blends with diesel K10, K15, and K20 and the experimental results were compared with that of diesel. The results showed that the fuel properties of K100, density, viscosity, flash point and carbon residue were found to be higher than that of diesel and calorific value is lower than that of diesel. Based on performance and combustion characteristics of the various blends, the optimum blend was found to be K15.
文摘Experimental tests have been carried out to evaluate the performance,emission and combustion characteristics of a diesel engine using neat sea lemon oil and its blends of 25%,50%,&75%and standard diesel fuel separately.The common problems posed when using vegetable oil in a compression ignition engine are poor atomization,carbon deposits,ring sticking etc.This is because of the high viscosity and low volatility of vegetable oil.When blended with diesel,sea lemon oil presented lower viscosity,improved volatility,better combustion and less carbon deposit.It was found that there was reduction in NO for neat sea lemon oil and its diesel blends along with marginal increase in smoke,HC and CO emissions compared to that of standard diesel.Brake thermal efficiency was slightly lower for neat sea lemon oil and its diesel blends.From the combustion analysis,it was found that sea lemon oil-diesel blends performed better than neat sea lemon oil.
文摘Biodiesel is derived from waste cooking oil (WCO) by transesterification. Methylester was prepared by mixing diesel and biodiesel oils as 20% by volume. Nano particles asTiO2, Al2O3 and CNTs were blended with biodiesel blend at different concentrations of 25,50, and 100 mg/l to enhance the physicochemical fuel characteristics to obtain clean and effi-cient combustion performance. An experimental setup was incorporated into a diesel engine toinvestigate the influence of these nano-materials on engine performance, exergy analysis, combustion characteristics and emissions using WCO biodiesel-diesel mixture. Enriching methylester mixture with 100 ppm titanium, alumina and CNTs (B20T100, B20A100 andB20C100) increased the thermal efficiency by 4%, 6% and 11.5%, respectively compared toB20. Biodiesel blending with nano additives B20T100, B20A100 and B20C100 decreasedthe emissions of CO (11%, 24% and 30%, respectively), HC (8%, 17% and 25%, respectively)and smoke (10%, 13% and 19%, respectively) compared to B20. However, the noticeable increase of NOx was estimated by 5%, 12% and 27% for B20T100, B20A100 and B20C100,respectively. Finally, the results showed the rise in peak cylinder pressure by 5%, 9% and 11% and increase in heat release rate by 4%, 8% and 13% for B20T100, B20A100 andB20C100, respectively. The fuel exergy of B20T100, B20A100 and B20C100 are lower thanbiodiesel blend B20 by 6.5%, 16% and 23% but the exergetic efficiency are increased by 7%,19% and 30% at full load about B20.