Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and...Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly,necessitating the exploration of eco-friendly bio-based alternatives.In this study,Camellia oleifera seed oil,a specialty resource in China,was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline)(AG-80)to synthesize Phenyl Camellia seed Oil Ester(PCSOE).PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations,with the conventional plasticizer dioctyl phthalate(DOP)serving as a control.Experimental results demonstrate that PSCOE-plasticized PVC films exhibit enhanced hydrophilicity,tensile strength,and thermal stability compared to DOP-modified PVC films.The contact angle of PSCOE-plasticized PVC films ranges from 66.26°to 78.48°,which is generally lower than the contact angle of DOP-modified PVC films at 78.40°,indicating improved hydrophilicity due to the modification with PCSOE.The tensile strength of PSCOE-plasticized PVC films ranges from 17.73 to 20.17 MPa,all surpassing the value of 16.41 MPa for DOP-modified PVC films.Moreover,the temperatures corresponding to 5%,10%,and 50%weight loss for PVC samples modified with PCSOE are higher than those for DOP.Hence,PCSOE presents a viable alternative to DOP as a plasticizer for PVC materials.展开更多
This paper studied the effects of liquid-solid ratio, temperature, time and pH value on the extraction rate of tea saponin from the cake of Camellia oleifera seeds by using single factor experiment with the cake of Ca...This paper studied the effects of liquid-solid ratio, temperature, time and pH value on the extraction rate of tea saponin from the cake of Camellia oleifera seeds by using single factor experiment with the cake of Camellia oleifera seeds as the raw materials, and water as the extraction solvent, and orthogonal test was used to determine the optimal extraction process conditions. The results showed that the extraction ratio of tea saponin could reach up to 95.50% when the liquidsolid ratio was 11:1, extracting temperature of 80 ℃, extraction time of 6 h, and pH value of 9.展开更多
This paper studied effects of different picking time and different geographical provenances on oil content of Camellia oleifera. The results showed that different picking time had significant effects on the oil conten...This paper studied effects of different picking time and different geographical provenances on oil content of Camellia oleifera. The results showed that different picking time had significant effects on the oil content of cold dew seeds and frost's descent seeds. With the delay of picking time,the oil content of cold dew seeds,frost's descent seeds,dry seeds and oil content of seed kernels were significantly increased.There was a significantly positive correlation between the oil content of fresh fruit of cold dew seeds and frost's descent seeds and the dry seed yield of fresh seeds and the oil content of fresh fruit( P < 0. 05),and the correlation coefficient was greater than 0. 85. Besides,the oil content of seed kernels of cold dew seeds was closely correlated with the seed yield of fresh seeds,oil content of fresh fruit,and oil content of fresh seeds. In the process of C. oleifera breeding,the thin coat,high seed yield and high oil content can be taken as the key research directions for future breeding. The oil content of ordinary C. oleifera seeds in 18 counties( cities) was 36. 42%-63. 33%,indicating that there were significant differences in the oil content of C. oleifera in different geographical provenances. In conclusion,according to the study of different picking time,the recommended picking time of cold dew seeds in Hunan area is around October 10,while the best picking time of frost's descent seeds is about October 30. The oil content of C. oleifera fruit in different geographical provenances is quite different. During the development of C. oleifera fruit,the cultivation and management of C. oleifera should be strengthened to increase the oil content of C. oleifera.展开更多
To determine the age of oil-tea camellia trees, regression equations including Logistic, Mitscherlich, Gompertz, Korf, and Richards were used to calculate accumulative growth rate using basal trunk disc and investigat...To determine the age of oil-tea camellia trees, regression equations including Logistic, Mitscherlich, Gompertz, Korf, and Richards were used to calculate accumulative growth rate using basal trunk disc and investigate the relations between the age of oil-tea camellia trees and their growth rate of secondary trunk. The Gompertz equation Y=71.296 1exp (-3.874 4exp (-0.006 4t)) was the most optimal equation to simulate the accumulative growth rate of basal trunk disc. This equation could be used to estimate the age of oil-tea camellia trees that grow under similar environmental conditions. The Korf equation Y=576.900 1exp (-4.153 0x -0.314 2 ) was the best equation to describe the relation between the age and growth rate of different secondary trunks. With the adjustment coefficient and average growth of different secondary trunk discs, it is possible to predict the age of ancient oil-tea camellia trees that grow under similar environmental conditions. In addition, taking three or more discs from the same diameter group and calculating their average growth rate could lead to more accurate results. For trees that grow in different areas, environmental conditions should be carefully considered when using the above two equations to predict the age of ancient oil-tea camellia trees.展开更多
In this study,as the plasticizer,Camellia oleifera seed-oil-based cyclohexyl ester(COSOCE)was prepared by the reaction of cyclohexene oxide and refined C.oleifera seed oil(RCOSO)obtained by acidification hydrolysis af...In this study,as the plasticizer,Camellia oleifera seed-oil-based cyclohexyl ester(COSOCE)was prepared by the reaction of cyclohexene oxide and refined C.oleifera seed oil(RCOSO)obtained by acidification hydrolysis after saponification.In addition,the structure of the target product was confirmed by Fourier transform infrared(FTIR)spectroscopy,nuclear magnetic resonance(NMR)spectroscopy,and Raman spectroscopy.COSOCE was used as plasticizer-modified polyvinyl chloride(PVC)membranes.The structure of the COSOCE-modified PVC membranes were characterized by Raman spectroscopy and scanning electron microscopy(SEM).The properties of the COSOCE-modified PVC membrane were characterized by contact angle measurements,universal testing machine,thermogravimetric analysis(TGA),and differential scanning calorimetry(DSC).The results revealed that(1)The COSOCE-modified PVC membranes exhibit a good microscopic morphology.Combined with energy-dispersive X-ray spectroscopy(EDS)and contact angle measurement results,the COSOCE-modified PVC membranes are confirmed to be a hydrophilic material.(2)The modified PVC membrane with 60%COSOCE exhibited the best mechanical properties.The tensile strength reached 23.56±2.94 MPa.(3)COSOCE-modified PVC material exhibited better thermal stability,with a loss rate of less than 75%at the end of the first decomposition stage.Compared with that of the dioctyl-phthalate(DOP)-modified PVC membrane,the initial decomposition temperature of PVC was increased by 1.17°C–8.17°C,and the residual rate was increased by 0.67%–5.75%.The carbon–carbon double bond in the COSOCE molecular structure can remove the free radicals generated during the degradation of PVC material and slow down the decomposition rate of PVC.In addition,the double bond can be cross-linked partially with the PVC molecular chain containing the conjugated polyene structure,thereby increasing the movement resistance of the PVC molecular chain segment.Hence,COSOCE can replace DOP as a PVC plasticizer.展开更多
A new process for extracting oil and starch from tea seed was introduced. The new process included one special link compared with all of the processes used now for tea seed oil and starch production. The link was stat...A new process for extracting oil and starch from tea seed was introduced. The new process included one special link compared with all of the processes used now for tea seed oil and starch production. The link was static fermentation by which oil bodies and starch were separated naturally from tea seeds. By the process, tea seed oil and starch which were in conformity with government standards about edible oil and starch were successfully produced with 16% and 8% of production rate, respectively. The new process has many advantages, such as more simple equipments, lower production cost and whole natural products, etc..展开更多
Physicochemical properties of green tea seed oil including cold test,color,flash point,gravity,refraction index,moisture content,acid value,iodine value,unsaponifiable matter and saponification value were investigated...Physicochemical properties of green tea seed oil including cold test,color,flash point,gravity,refraction index,moisture content,acid value,iodine value,unsaponifiable matter and saponification value were investigated.Fatty acid composition and catechin content of the oil was determined by GC and HPLC analysis.The oil is stable at low temperature.High flash point(267.8 ± 5.1℃) showed the high thermal stability of green tea seed oil as well,which support for suitability to use as cooking oil.Specific gravity and refraction index of green tea seed oil was found as 0.913 and 1.4679,respectively.Color of the oil was measured as 99.7 ± 0.2 for lightness,1.9 ± 0.1 for greenness and 6.6 ± 0.1 for yellowness.Acid value(KOH mg/ml),iodine value,unsaponifiable matter(%) and saponification value of green tea seed oil were 0.21,104.1,0.11 and 215,respectively.Fatty acids compositions of green tea seed oil was found to be dominated by oleic acid(81.3%) and presence of minor amount of linoleic acid(4.8%),palmitic acid(4.6%),palmitoleic acid(3.3%),linolenic acid(3.2%) and stearic acid(1.0%).The presence of antioxidative compounds such as(-)-epicatechingallate(207.2 ± 0.2 g /g) and(-)-epigallocatechin gallate(99.5 ± 0.6 g/g) in the oil could enhance its shelf life during storage.展开更多
Camellia oil is an edible vegetable oil with high value of nutrition and health protection function such as antioxidant and adjusting blood fat. In this study, a simple, rapid and effective HPTLC method was developed ...Camellia oil is an edible vegetable oil with high value of nutrition and health protection function such as antioxidant and adjusting blood fat. In this study, a simple, rapid and effective HPTLC method was developed for analyzing the composition and antioxidant constituents of camellia oil. The HPTLC was performed on G60 plate with n-hexane-diethyl ether-acetic acid (6:4:0.1, v/v/v) as mobile phase combined with two coloration methods (ethanol containing 10% phosphomolybdic acid, ethanol containing 0.03% DPPH) and scanning densitometry technique. The unsaturated fatty glyceride, free fatty acids, sterols and lipids including triolein, oleic acid, ergosterin, β-sitosterol, tocopherol and phospholipids in camellia oils were determined and performed densitometrically at λs1 = 620 nm and λs2 = 517 nm. The results show that the main components of different samples of camellia oil are similar, however the contents are diverse. The antioxidative test shows that camellia oil has obvious antioxidant capability as olive oil, especially the pressed virgin oil. Therefore, this non-derivatization HPTLC method can be used for composition and antioxidative capacity determination of camellia oils.展开更多
Camellia oleifera industry plays a key role in the safety of edible oils in China,and its seed has great potential for comprehensive utilization.This review mainly introduced processing technology of Camellia seed,whi...Camellia oleifera industry plays a key role in the safety of edible oils in China,and its seed has great potential for comprehensive utilization.This review mainly introduced processing technology of Camellia seed,which included pretreatment,extraction,and high value utilization.The comprehensive utilization and nutritional value of Camellia seed were discussed.Microwave is the best pretreatment method,and shelling technology can improve oil yield.Cold pressing technology was widely accepted and aqueous enzymatic method had wide prospects.Comprehensive utilization technology of Camellia oleifera cake mainly focused on saponin extracting.In the future,processing technology of Camellia seed will be further developed in the direction of improving comprehensive utilization rate to meet new consumption demand.展开更多
In the current study,tea saponin,identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel.,was meticulously extracted and hydrolyzed to yield five known sapogenins:16-O-tiglogycamelliag...In the current study,tea saponin,identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel.,was meticulously extracted and hydrolyzed to yield five known sapogenins:16-O-tiglogycamelliagnin B(a),camelliagnin A(b),16-O-angeloybarringtogenol C(c),theasapogenol E(d),theasapogenol F(e).Subsequent biotransformation of compound a facilitated the isolation of six novel metabolites(a1−a6).The anti-inflammatory potential of these compounds was assessed using pathogenassociated molecular patterns(PAMPs)and damage-associated molecular patterns molecules(DAMPs)-mediated cellular inflammation models.Notably,compounds b and a2 demonstrated significant inhibitory effects on both lipopolysaccharide(LPS)and high-mobility group box 1(HMGB1)-induced inflammation,surpassing the efficacy of the standard anti-inflammatory agent,carbenoxolone.Conversely,compounds d,a3,and a6 selectivity targeted endogenous HMGB1-induced inflammation,showcasing a pronounced specificity.These results underscore the therapeutic promise of C.oleifera seed pomace-derived compounds as potent agents for the management of inflammatory diseases triggered by infections and tissue damage.展开更多
基金funded by the Scarce and Quality Economic Forest Engineering Technology Research Center(2022GCZX002)the Key Lab.of Biomass Energy and Material,Jiangsu Province(Grant No.JSBEM-S-202305).
文摘Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly,necessitating the exploration of eco-friendly bio-based alternatives.In this study,Camellia oleifera seed oil,a specialty resource in China,was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline)(AG-80)to synthesize Phenyl Camellia seed Oil Ester(PCSOE).PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations,with the conventional plasticizer dioctyl phthalate(DOP)serving as a control.Experimental results demonstrate that PSCOE-plasticized PVC films exhibit enhanced hydrophilicity,tensile strength,and thermal stability compared to DOP-modified PVC films.The contact angle of PSCOE-plasticized PVC films ranges from 66.26°to 78.48°,which is generally lower than the contact angle of DOP-modified PVC films at 78.40°,indicating improved hydrophilicity due to the modification with PCSOE.The tensile strength of PSCOE-plasticized PVC films ranges from 17.73 to 20.17 MPa,all surpassing the value of 16.41 MPa for DOP-modified PVC films.Moreover,the temperatures corresponding to 5%,10%,and 50%weight loss for PVC samples modified with PCSOE are higher than those for DOP.Hence,PCSOE presents a viable alternative to DOP as a plasticizer for PVC materials.
文摘This paper studied the effects of liquid-solid ratio, temperature, time and pH value on the extraction rate of tea saponin from the cake of Camellia oleifera seeds by using single factor experiment with the cake of Camellia oleifera seeds as the raw materials, and water as the extraction solvent, and orthogonal test was used to determine the optimal extraction process conditions. The results showed that the extraction ratio of tea saponin could reach up to 95.50% when the liquidsolid ratio was 11:1, extracting temperature of 80 ℃, extraction time of 6 h, and pH value of 9.
基金Supported by Sci-tech Plan Program of Hunan Province Science and Technology Department"Study and Demonstration of Key Technologies for High-yield and Stable Cultivation of Meteorological Protection for Camellia oleifera"(2016NK2175)
文摘This paper studied effects of different picking time and different geographical provenances on oil content of Camellia oleifera. The results showed that different picking time had significant effects on the oil content of cold dew seeds and frost's descent seeds. With the delay of picking time,the oil content of cold dew seeds,frost's descent seeds,dry seeds and oil content of seed kernels were significantly increased.There was a significantly positive correlation between the oil content of fresh fruit of cold dew seeds and frost's descent seeds and the dry seed yield of fresh seeds and the oil content of fresh fruit( P < 0. 05),and the correlation coefficient was greater than 0. 85. Besides,the oil content of seed kernels of cold dew seeds was closely correlated with the seed yield of fresh seeds,oil content of fresh fruit,and oil content of fresh seeds. In the process of C. oleifera breeding,the thin coat,high seed yield and high oil content can be taken as the key research directions for future breeding. The oil content of ordinary C. oleifera seeds in 18 counties( cities) was 36. 42%-63. 33%,indicating that there were significant differences in the oil content of C. oleifera in different geographical provenances. In conclusion,according to the study of different picking time,the recommended picking time of cold dew seeds in Hunan area is around October 10,while the best picking time of frost's descent seeds is about October 30. The oil content of C. oleifera fruit in different geographical provenances is quite different. During the development of C. oleifera fruit,the cultivation and management of C. oleifera should be strengthened to increase the oil content of C. oleifera.
基金Supported by Hunan Forestry Science and Technology Project(XLK201707)
文摘To determine the age of oil-tea camellia trees, regression equations including Logistic, Mitscherlich, Gompertz, Korf, and Richards were used to calculate accumulative growth rate using basal trunk disc and investigate the relations between the age of oil-tea camellia trees and their growth rate of secondary trunk. The Gompertz equation Y=71.296 1exp (-3.874 4exp (-0.006 4t)) was the most optimal equation to simulate the accumulative growth rate of basal trunk disc. This equation could be used to estimate the age of oil-tea camellia trees that grow under similar environmental conditions. The Korf equation Y=576.900 1exp (-4.153 0x -0.314 2 ) was the best equation to describe the relation between the age and growth rate of different secondary trunks. With the adjustment coefficient and average growth of different secondary trunk discs, it is possible to predict the age of ancient oil-tea camellia trees that grow under similar environmental conditions. In addition, taking three or more discs from the same diameter group and calculating their average growth rate could lead to more accurate results. For trees that grow in different areas, environmental conditions should be carefully considered when using the above two equations to predict the age of ancient oil-tea camellia trees.
基金Funding Statement:The authors express their gratitude for the financial support from the National Natural Science Foundation of China(32101475)the Yuemu Technology Plan Project(YMKJ202201).
文摘In this study,as the plasticizer,Camellia oleifera seed-oil-based cyclohexyl ester(COSOCE)was prepared by the reaction of cyclohexene oxide and refined C.oleifera seed oil(RCOSO)obtained by acidification hydrolysis after saponification.In addition,the structure of the target product was confirmed by Fourier transform infrared(FTIR)spectroscopy,nuclear magnetic resonance(NMR)spectroscopy,and Raman spectroscopy.COSOCE was used as plasticizer-modified polyvinyl chloride(PVC)membranes.The structure of the COSOCE-modified PVC membranes were characterized by Raman spectroscopy and scanning electron microscopy(SEM).The properties of the COSOCE-modified PVC membrane were characterized by contact angle measurements,universal testing machine,thermogravimetric analysis(TGA),and differential scanning calorimetry(DSC).The results revealed that(1)The COSOCE-modified PVC membranes exhibit a good microscopic morphology.Combined with energy-dispersive X-ray spectroscopy(EDS)and contact angle measurement results,the COSOCE-modified PVC membranes are confirmed to be a hydrophilic material.(2)The modified PVC membrane with 60%COSOCE exhibited the best mechanical properties.The tensile strength reached 23.56±2.94 MPa.(3)COSOCE-modified PVC material exhibited better thermal stability,with a loss rate of less than 75%at the end of the first decomposition stage.Compared with that of the dioctyl-phthalate(DOP)-modified PVC membrane,the initial decomposition temperature of PVC was increased by 1.17°C–8.17°C,and the residual rate was increased by 0.67%–5.75%.The carbon–carbon double bond in the COSOCE molecular structure can remove the free radicals generated during the degradation of PVC material and slow down the decomposition rate of PVC.In addition,the double bond can be cross-linked partially with the PVC molecular chain containing the conjugated polyene structure,thereby increasing the movement resistance of the PVC molecular chain segment.Hence,COSOCE can replace DOP as a PVC plasticizer.
文摘A new process for extracting oil and starch from tea seed was introduced. The new process included one special link compared with all of the processes used now for tea seed oil and starch production. The link was static fermentation by which oil bodies and starch were separated naturally from tea seeds. By the process, tea seed oil and starch which were in conformity with government standards about edible oil and starch were successfully produced with 16% and 8% of production rate, respectively. The new process has many advantages, such as more simple equipments, lower production cost and whole natural products, etc..
文摘Physicochemical properties of green tea seed oil including cold test,color,flash point,gravity,refraction index,moisture content,acid value,iodine value,unsaponifiable matter and saponification value were investigated.Fatty acid composition and catechin content of the oil was determined by GC and HPLC analysis.The oil is stable at low temperature.High flash point(267.8 ± 5.1℃) showed the high thermal stability of green tea seed oil as well,which support for suitability to use as cooking oil.Specific gravity and refraction index of green tea seed oil was found as 0.913 and 1.4679,respectively.Color of the oil was measured as 99.7 ± 0.2 for lightness,1.9 ± 0.1 for greenness and 6.6 ± 0.1 for yellowness.Acid value(KOH mg/ml),iodine value,unsaponifiable matter(%) and saponification value of green tea seed oil were 0.21,104.1,0.11 and 215,respectively.Fatty acids compositions of green tea seed oil was found to be dominated by oleic acid(81.3%) and presence of minor amount of linoleic acid(4.8%),palmitic acid(4.6%),palmitoleic acid(3.3%),linolenic acid(3.2%) and stearic acid(1.0%).The presence of antioxidative compounds such as(-)-epicatechingallate(207.2 ± 0.2 g /g) and(-)-epigallocatechin gallate(99.5 ± 0.6 g/g) in the oil could enhance its shelf life during storage.
文摘Camellia oil is an edible vegetable oil with high value of nutrition and health protection function such as antioxidant and adjusting blood fat. In this study, a simple, rapid and effective HPTLC method was developed for analyzing the composition and antioxidant constituents of camellia oil. The HPTLC was performed on G60 plate with n-hexane-diethyl ether-acetic acid (6:4:0.1, v/v/v) as mobile phase combined with two coloration methods (ethanol containing 10% phosphomolybdic acid, ethanol containing 0.03% DPPH) and scanning densitometry technique. The unsaturated fatty glyceride, free fatty acids, sterols and lipids including triolein, oleic acid, ergosterin, β-sitosterol, tocopherol and phospholipids in camellia oils were determined and performed densitometrically at λs1 = 620 nm and λs2 = 517 nm. The results show that the main components of different samples of camellia oil are similar, however the contents are diverse. The antioxidative test shows that camellia oil has obvious antioxidant capability as olive oil, especially the pressed virgin oil. Therefore, this non-derivatization HPTLC method can be used for composition and antioxidative capacity determination of camellia oils.
基金financial support of the National Key Research and Development Project of China (2018YFD0401104)
文摘Camellia oleifera industry plays a key role in the safety of edible oils in China,and its seed has great potential for comprehensive utilization.This review mainly introduced processing technology of Camellia seed,which included pretreatment,extraction,and high value utilization.The comprehensive utilization and nutritional value of Camellia seed were discussed.Microwave is the best pretreatment method,and shelling technology can improve oil yield.Cold pressing technology was widely accepted and aqueous enzymatic method had wide prospects.Comprehensive utilization technology of Camellia oleifera cake mainly focused on saponin extracting.In the future,processing technology of Camellia seed will be further developed in the direction of improving comprehensive utilization rate to meet new consumption demand.
基金supported by the National Nature Science Foundation of China(No.21302052)the“Program for New Century Excellent Talents in University”awarded to ZHANG Jian(No.NECT-11-0739)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJKY19_0658)Jiangsu Funding Program for Excellent Postdoctoral Talent,and“Jiangsu Funding Program for Excellent Postdoctoral Talent”awarded to SHEN Pingping.
文摘In the current study,tea saponin,identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel.,was meticulously extracted and hydrolyzed to yield five known sapogenins:16-O-tiglogycamelliagnin B(a),camelliagnin A(b),16-O-angeloybarringtogenol C(c),theasapogenol E(d),theasapogenol F(e).Subsequent biotransformation of compound a facilitated the isolation of six novel metabolites(a1−a6).The anti-inflammatory potential of these compounds was assessed using pathogenassociated molecular patterns(PAMPs)and damage-associated molecular patterns molecules(DAMPs)-mediated cellular inflammation models.Notably,compounds b and a2 demonstrated significant inhibitory effects on both lipopolysaccharide(LPS)and high-mobility group box 1(HMGB1)-induced inflammation,surpassing the efficacy of the standard anti-inflammatory agent,carbenoxolone.Conversely,compounds d,a3,and a6 selectivity targeted endogenous HMGB1-induced inflammation,showcasing a pronounced specificity.These results underscore the therapeutic promise of C.oleifera seed pomace-derived compounds as potent agents for the management of inflammatory diseases triggered by infections and tissue damage.