This paper examines the significance of innovative replanting strategies in maximizing oil palm yield while ensuring sustainable productivity.Through a comprehensive review of literature and analysis of current practi...This paper examines the significance of innovative replanting strategies in maximizing oil palm yield while ensuring sustainable productivity.Through a comprehensive review of literature and analysis of current practices,the major findings of this research highlighted the importance of advanced breeding and clonal selection in developing high-yielding and disease-resistant oil palm varieties.Precision agriculture technologies,including IoT devices,drones,and sensors,were identified as critical tools for data-driven decision making,optimizing resource efficiency,and reducing environmental impact.Sustainable land use planning and agroforestry integration emerged as key strategies to balance productivity with environmental conservation.The broader impacts of this work extend to other agricultural sectors and land use planning,offering valuable insights for policymakers and stakeholders to promote responsible and resilient agricultural practices.By embracing innovative replanting strategies,the oil palm industry can contribute to a more sustainable and prosperous future,balancing economic growth with environmental stewardship.Continued research and collaboration are essential to achieve these goals and foster a harmonious coexistence between productivity and sustainability,integrating precision agriculture technologies for resource optimization and reduced environmental impact,promoting sustainable land use planning and agroforestry integration to enhance biodiversity and ecosystem services.Strengthening collaborations between governments,industry players,and research institutions for innovation and knowledge exchange is essential.展开更多
China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly l...China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly lower than that of other dominant apple producing countries. In addition, apple production is based on excessive application of chemical fertilizers and the nutrient use efficiency (especially nitrogen) is therefore low and the nutrient emissions to the environment are high. Apple production in China is considerably contributes to farmers' incomes and is important as export product. There is an urgent need to enhance apple productivity and improve nutrient use efficiencies in intensive apple production systems in the country. These can be attained by improved understanding of production potential, yield gaps, nutrient use and best management in apple orchards. To the end, priorities in research on apple production systems and required political support are described which may lead to more sustainable and environmental-friendly intensification of apple production in China.展开更多
With decreasing availability of water for agriculture and increasing demand for rice production, an optimum use of irrigation water and phosphorus may guarantee sustainable rice production. Field experiments were cond...With decreasing availability of water for agriculture and increasing demand for rice production, an optimum use of irrigation water and phosphorus may guarantee sustainable rice production. Field experiments were conducted in 2003 and 2004 to investigate the effect of phosphorus and irrigation levels on yield, water productivity (WP), phosphorus use efficiency (PUE) and income of low land rice. The experiment was laid out in randomized complete block design with split plot arrangements replicated four times. Main plot consisted of five phosphorus levels, viz. 0 (P0), 50 (P50), 100 (P100), 150 (P15o), and 200 (P200) kg/hm2, while subplots contained of irrigation times, i.e. 8 (I8), 10 (I10), 12 (I12), and 14 (I14) irrigation levels, each with a water depth of 7.5 cm. Mean values revealed that P150 in combination with I10 produced the highest paddy yield (9.8 t/hm2) and net benefit (1 231.8 US$/hm2) among all the treatments. Phosphorus enhanced WP when applied in appropriate combination with irrigation level. The highest mean WP [13.3 kg/(hm2-mm)] could be achieved at Plso with 18 and decreased with increase in irrigation level, while the highest mean PUE (20.1 kg/kg) could be achieved at P100 with I10 and diminished with higher P levels. The overall results indicate that P150 along with I10 was the best combination for sustainable rice cultivation in silty clay soil.展开更多
Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in a...Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in arid and semiarid areas. Supplemental irrigation would still be needed to achieve a higher production. Field experiments were conducted for two growing seasons (2012-2013 and 2013-2014)to determine an appropriate amount of supplemental irrigation to be applied to winter oilseed rape at the stem-elongation stage with RFRH planting pattern. Four treatments, including supplemental irrigation amount of 0 (I1), 60 mm (I2) and 120 mm (I3) with RFRH planting pattern and a control (CK) irrigated with 120 mm with flat planting pattern, were set up to evaluate the effects of supplemental irrigation on aboveground dry matter (ADM), nitrogen nutrition index (NNI), radiation use efficiency (RUE), water use efficiency (WUE), and seed yield and oil content of the oilseed rape. Results showed that supplemental irrigation improved NNI, RUE, seed yield and oil content, and WUE. However, the NNI, RUE, seed yield and oil content, and WUE did not increase significantly or even showed a downward trend with excessive irrigation. Seed yield was the highest in 13 for both growing seasons. Seed yield and WUE in 13 averaged 3235 kg ha^-1 and 8.85 kg ha^-1 mm-1, respectively. The highest WUE was occurred in 12 for both growing seasons. Seed yield and WUE in 12 averaged 3089 kg ha^-1 and 9.63 kg ha^-1 mm^-1, respectively. Compared to 13, 12 used 60 mm less irrigation amount, had an 8.9% higher WUE, but only 4.5 and 0.4% lower seed yield and oil content, respectively. 12 saved water without substantially sacrificing yield or oil content, so it is recommended as an appropriate cultivation and irrigation schedule for winter oilseed rape at the stem-elongation stage.展开更多
Two field experiments were conducted during the main seasons of 2021/2022 at the Research and Production Station of National Research Centre in Egypt to investigate the effects of farmyard manure(FYM)and boron on Cano...Two field experiments were conducted during the main seasons of 2021/2022 at the Research and Production Station of National Research Centre in Egypt to investigate the effects of farmyard manure(FYM)and boron on Canola growth,yield,oil yield,and quality.The results unequivocally demonstrated that the combined application of FYM at a rate of 14.4 ton ha^(-1)with a foliar spray of boron at 100 ppm positively influenced plant characteristics,leading to enhanced growth rates and higher yields compared to the control group.Moreover,this integrated approach significantly improved nutrient content by enhancing levels of oil content,carbohydrates,proteins,phenolics,flavonoids,and total soluble sugars.These findings provide compelling evidence that utilizing farm manure along with boron can effectively enhance Canola properties in newly reclaimed soils while promoting sustainable agricultural practices.展开更多
The current palm oil harvesting process removes the whole fruit bunch from the palm with most of the fruit unripe, and takes the whole fruit bunch from the plantation to a processing mill. There are two consequences. ...The current palm oil harvesting process removes the whole fruit bunch from the palm with most of the fruit unripe, and takes the whole fruit bunch from the plantation to a processing mill. There are two consequences. This robs the symbiotic palm/soil eco-system of important nutrients and steadily reduces soil fertility. Poor soil fertility is now the limit to palm oil production in peninsular Malaysia despite much use of expensive fertiliser, and weak palms in unhealthy soil are prone to the fungus Ganoderma. Secondly, it takes much energy to remove the fruit from the bunch and the quantity and quality of the oil is less than that of ripe fruit. All this is because ripe fruit—which naturally becomes loose—has been defined as “a problem” in harvesting. This paper proposes covering the fruit bunch in a mesh sack whilst ripening, which prevents ripe fruit naturally from becoming loose being a problem and transforms the whole harvesting process. This allows efficient fruit separation and fruit pressing to be done at the foot of the palm tree with only the oil being removed from the plantation, both simplifying and improving the harvesting process and maintaining the organic fertility cycle, adding value in every respect.展开更多
In recent years, the understanding of human health has progressed considerably, through the study and understanding of the symbiotic role played by the myriad microorganisms that populate the gut and do the digesting,...In recent years, the understanding of human health has progressed considerably, through the study and understanding of the symbiotic role played by the myriad microorganisms that populate the gut and do the digesting, and populate the skin and keep it healthy, and even populate the lining of the lungs and do the same. In plant life, it is the microorganisms in the soil—which “are” the soil’s fertility—which fulfil a similar symbiotic role in a healthy plant’s life, but as yet this is a subject most visible by its absence from all scientific discussion of good farming practice. The science underlying this understanding is summarised in this paper. Understanding this and nurturing the fertility of impoverished soil by “seeding it” with the appropriate mix of microorganisms is transformational for plant health and productivity. Significant results are indicated from early trial examples of doing this in rice, oil palm and tobacco cultivation in Malaysia.展开更多
To investigate the effects of crop rotation on oilseed flax growth and yield,three season experiments were carried out in semi-arid area of Dingxi,Gansu from 2017 to 2019.The designed 6 rotational systems were FFF(fla...To investigate the effects of crop rotation on oilseed flax growth and yield,three season experiments were carried out in semi-arid area of Dingxi,Gansu from 2017 to 2019.The designed 6 rotational systems were FFF(flax-flaxflax),PFF(potato-flax-flax),WPF(wheat-potato-flax),FPF(flax-potato-flax),PWF(potato-wheat-flax)and FWF(flax-wheat-flax).Flax growth and yield investigation results showed that crop rotation increased leaf area duration,dry matter accumulation,seed nitrogen accumulation,water and nitrogen used efficiency,compared with continuous cropping of flax.Flaxseed yields in rotation systems were 22.23%–44.11%greater than those of continuous cropping system.Those in wheat and potato stubbles had higher tiller number(21.43%and 29.46%),more branches(14.24%and 6.97%),effective capsules(26.35%and 28.79%),higher water use efficiency(40.26%and 33.5%),higher nitrogen partial factor productivity(33.85%and 31.46%)and dry matter(41.98%and 25.47%)than those in oilseed flax stubble.It concluded that crop rotation system was an effective measure for oilseed flax productivity in semi-arid area by improving yield components and promoting biomass.展开更多
In irrigated agricultural systems,nitrogen(N)and water are the vital resources for sustainability of the crop production in the modern era of climate change.The current study aimed to assess the impact of water and N ...In irrigated agricultural systems,nitrogen(N)and water are the vital resources for sustainability of the crop production in the modern era of climate change.The current study aimed to assess the impact of water and N management on the productivity of irrigated rice cultivars.In the context,a field observation was done at the research farm of Bangladesh Agricultural University,Mymensingh,during dry seasons in consecutive two years(2018–2019 and 2019–2020).The experiments were set up following split-plot design assigning water management in the main plots,nitrogen management in the sub-plots,and the cultivars were approved in the split-split plot with three replications.After two years observation,it was revealed that rice cultivar Binadhan-8 gave the maximum value of leaf area index,number effective tillers hill-1 and grains panicle-1 which lead to the higher grain yield(GY).Substantial relationships were observed among the concentration of N,growth,total dry matter(TDM)and N content,N uptake,N utilization effectiveness,and GY.However,with little exception,the Combined effect of water and N,cultivars and water management were varied significantly for all parameters.Finally,the results of the current study concluded that application of irrigation at 8 days after the disappearance of ponded water and source of 105 kg N ha-1 from PU+Poultry manure are the best management approach for the excellent performance of rice cultivar Binadhan-8.展开更多
Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and ...Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and possible potential for heavy oil reservoirs.However,the addition of polymer may cause problems with injection in the case of highly viscous oil.Hence,in this study the feasibility of alkali-cosolvent(AC)flooding in heavy oil reservoirs was investigated via several groups of experiments.The interfacial tension between various AC formulations and heavy crude oil was measured to select appropriate formulations.Phase behavior tests were performed to determine the most appropriate formulation and conditions for the generation of a microemulsion.Sandpack flooding experiments were carried out to investigate the displacement efficiency of the selected Ac formulation.The results showed that the interfacial tension between an AC formulation and heavy oil could be reduced to below 1o-3 mN/m but differed greatly between different types of cosolvent.A butanol random polyether series displayed good performance in reducing the water-oil interfacial tension,which made it possible to form a Type Il microemulsion in reservoir conditions.According to the results of the phase behavior tests,the optimal salinity for different formulations with four cosolvent concentrations(0.5 wt%,1 wt%,2 wt%,and 3 wt%)was 4000,8000,14000,and 20000 ppm,respectively.The results of rheological measurements showed that Type Ill microemulsion had a viscosity that was ten times that of water.The results of sandpack flooding experiments showed that,in comparison with waterflooding,the injection of a certain Ac formulation slug could reduce the injection pressure.The pressure gradient during waterflooding and AC flooding was around 870 and 30-57 kPa/m,respectively.With the addition of an AC slug,the displacement efficiency was 30%-50%higher than in the case of waterflooding.展开更多
基金support from the Universiti Putra Malaysia Fundamental Research Grant Scheme(FRGS 1/2020/WAB04/Vote no 5540305)D’Khairan Farm Sdn Bhd(Vote no 6300349).
文摘This paper examines the significance of innovative replanting strategies in maximizing oil palm yield while ensuring sustainable productivity.Through a comprehensive review of literature and analysis of current practices,the major findings of this research highlighted the importance of advanced breeding and clonal selection in developing high-yielding and disease-resistant oil palm varieties.Precision agriculture technologies,including IoT devices,drones,and sensors,were identified as critical tools for data-driven decision making,optimizing resource efficiency,and reducing environmental impact.Sustainable land use planning and agroforestry integration emerged as key strategies to balance productivity with environmental conservation.The broader impacts of this work extend to other agricultural sectors and land use planning,offering valuable insights for policymakers and stakeholders to promote responsible and resilient agricultural practices.By embracing innovative replanting strategies,the oil palm industry can contribute to a more sustainable and prosperous future,balancing economic growth with environmental stewardship.Continued research and collaboration are essential to achieve these goals and foster a harmonious coexistence between productivity and sustainability,integrating precision agriculture technologies for resource optimization and reduced environmental impact,promoting sustainable land use planning and agroforestry integration to enhance biodiversity and ecosystem services.Strengthening collaborations between governments,industry players,and research institutions for innovation and knowledge exchange is essential.
基金the project "Cash Crops Research Network of China" of the Center for Resources, Environment and Food Security, China Agricultural UniversityProfessor Oene Oenema from Alterra Wageningnen University, the Netherlands, for his financial support of the research
文摘China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly lower than that of other dominant apple producing countries. In addition, apple production is based on excessive application of chemical fertilizers and the nutrient use efficiency (especially nitrogen) is therefore low and the nutrient emissions to the environment are high. Apple production in China is considerably contributes to farmers' incomes and is important as export product. There is an urgent need to enhance apple productivity and improve nutrient use efficiencies in intensive apple production systems in the country. These can be attained by improved understanding of production potential, yield gaps, nutrient use and best management in apple orchards. To the end, priorities in research on apple production systems and required political support are described which may lead to more sustainable and environmental-friendly intensification of apple production in China.
基金Gomal University, Dera IsmailKhan, Pakistan for partial support
文摘With decreasing availability of water for agriculture and increasing demand for rice production, an optimum use of irrigation water and phosphorus may guarantee sustainable rice production. Field experiments were conducted in 2003 and 2004 to investigate the effect of phosphorus and irrigation levels on yield, water productivity (WP), phosphorus use efficiency (PUE) and income of low land rice. The experiment was laid out in randomized complete block design with split plot arrangements replicated four times. Main plot consisted of five phosphorus levels, viz. 0 (P0), 50 (P50), 100 (P100), 150 (P15o), and 200 (P200) kg/hm2, while subplots contained of irrigation times, i.e. 8 (I8), 10 (I10), 12 (I12), and 14 (I14) irrigation levels, each with a water depth of 7.5 cm. Mean values revealed that P150 in combination with I10 produced the highest paddy yield (9.8 t/hm2) and net benefit (1 231.8 US$/hm2) among all the treatments. Phosphorus enhanced WP when applied in appropriate combination with irrigation level. The highest mean WP [13.3 kg/(hm2-mm)] could be achieved at Plso with 18 and decreased with increase in irrigation level, while the highest mean PUE (20.1 kg/kg) could be achieved at P100 with I10 and diminished with higher P levels. The overall results indicate that P150 along with I10 was the best combination for sustainable rice cultivation in silty clay soil.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest,China(201503105 and 201503125)the National High-Tech R&D Program of China(863 Program,2011AA100504)
文摘Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in arid and semiarid areas. Supplemental irrigation would still be needed to achieve a higher production. Field experiments were conducted for two growing seasons (2012-2013 and 2013-2014)to determine an appropriate amount of supplemental irrigation to be applied to winter oilseed rape at the stem-elongation stage with RFRH planting pattern. Four treatments, including supplemental irrigation amount of 0 (I1), 60 mm (I2) and 120 mm (I3) with RFRH planting pattern and a control (CK) irrigated with 120 mm with flat planting pattern, were set up to evaluate the effects of supplemental irrigation on aboveground dry matter (ADM), nitrogen nutrition index (NNI), radiation use efficiency (RUE), water use efficiency (WUE), and seed yield and oil content of the oilseed rape. Results showed that supplemental irrigation improved NNI, RUE, seed yield and oil content, and WUE. However, the NNI, RUE, seed yield and oil content, and WUE did not increase significantly or even showed a downward trend with excessive irrigation. Seed yield was the highest in 13 for both growing seasons. Seed yield and WUE in 13 averaged 3235 kg ha^-1 and 8.85 kg ha^-1 mm-1, respectively. The highest WUE was occurred in 12 for both growing seasons. Seed yield and WUE in 12 averaged 3089 kg ha^-1 and 9.63 kg ha^-1 mm^-1, respectively. Compared to 13, 12 used 60 mm less irrigation amount, had an 8.9% higher WUE, but only 4.5 and 0.4% lower seed yield and oil content, respectively. 12 saved water without substantially sacrificing yield or oil content, so it is recommended as an appropriate cultivation and irrigation schedule for winter oilseed rape at the stem-elongation stage.
基金supported and funded by National Research Centre,Egypt
文摘Two field experiments were conducted during the main seasons of 2021/2022 at the Research and Production Station of National Research Centre in Egypt to investigate the effects of farmyard manure(FYM)and boron on Canola growth,yield,oil yield,and quality.The results unequivocally demonstrated that the combined application of FYM at a rate of 14.4 ton ha^(-1)with a foliar spray of boron at 100 ppm positively influenced plant characteristics,leading to enhanced growth rates and higher yields compared to the control group.Moreover,this integrated approach significantly improved nutrient content by enhancing levels of oil content,carbohydrates,proteins,phenolics,flavonoids,and total soluble sugars.These findings provide compelling evidence that utilizing farm manure along with boron can effectively enhance Canola properties in newly reclaimed soils while promoting sustainable agricultural practices.
文摘The current palm oil harvesting process removes the whole fruit bunch from the palm with most of the fruit unripe, and takes the whole fruit bunch from the plantation to a processing mill. There are two consequences. This robs the symbiotic palm/soil eco-system of important nutrients and steadily reduces soil fertility. Poor soil fertility is now the limit to palm oil production in peninsular Malaysia despite much use of expensive fertiliser, and weak palms in unhealthy soil are prone to the fungus Ganoderma. Secondly, it takes much energy to remove the fruit from the bunch and the quantity and quality of the oil is less than that of ripe fruit. All this is because ripe fruit—which naturally becomes loose—has been defined as “a problem” in harvesting. This paper proposes covering the fruit bunch in a mesh sack whilst ripening, which prevents ripe fruit naturally from becoming loose being a problem and transforms the whole harvesting process. This allows efficient fruit separation and fruit pressing to be done at the foot of the palm tree with only the oil being removed from the plantation, both simplifying and improving the harvesting process and maintaining the organic fertility cycle, adding value in every respect.
文摘In recent years, the understanding of human health has progressed considerably, through the study and understanding of the symbiotic role played by the myriad microorganisms that populate the gut and do the digesting, and populate the skin and keep it healthy, and even populate the lining of the lungs and do the same. In plant life, it is the microorganisms in the soil—which “are” the soil’s fertility—which fulfil a similar symbiotic role in a healthy plant’s life, but as yet this is a subject most visible by its absence from all scientific discussion of good farming practice. The science underlying this understanding is summarised in this paper. Understanding this and nurturing the fertility of impoverished soil by “seeding it” with the appropriate mix of microorganisms is transformational for plant health and productivity. Significant results are indicated from early trial examples of doing this in rice, oil palm and tobacco cultivation in Malaysia.
基金This study was supported by Gansu Provincial Key Laboratory of Aridland Crop Science of Gansu Agricultural University(GSCS-2020-Z6)the China Agriculture Research System of Construct Special(CARS-14-1-16)+1 种基金the National Natural Science Programs of China(31660368,32060437)the Fuxi Outstanding Talent Cultivation Plan of Gansu Agriculture University(Gaufx-02J05).I am very grateful to all my working partners.
文摘To investigate the effects of crop rotation on oilseed flax growth and yield,three season experiments were carried out in semi-arid area of Dingxi,Gansu from 2017 to 2019.The designed 6 rotational systems were FFF(flax-flaxflax),PFF(potato-flax-flax),WPF(wheat-potato-flax),FPF(flax-potato-flax),PWF(potato-wheat-flax)and FWF(flax-wheat-flax).Flax growth and yield investigation results showed that crop rotation increased leaf area duration,dry matter accumulation,seed nitrogen accumulation,water and nitrogen used efficiency,compared with continuous cropping of flax.Flaxseed yields in rotation systems were 22.23%–44.11%greater than those of continuous cropping system.Those in wheat and potato stubbles had higher tiller number(21.43%and 29.46%),more branches(14.24%and 6.97%),effective capsules(26.35%and 28.79%),higher water use efficiency(40.26%and 33.5%),higher nitrogen partial factor productivity(33.85%and 31.46%)and dry matter(41.98%and 25.47%)than those in oilseed flax stubble.It concluded that crop rotation system was an effective measure for oilseed flax productivity in semi-arid area by improving yield components and promoting biomass.
基金Bangladesh Agricultural Research Council(BARC),Bangladesh and the Taif University Researchers Supporting Project No.(TURSP-2020/85),Taif University,Taif,Saudi Arabia.
文摘In irrigated agricultural systems,nitrogen(N)and water are the vital resources for sustainability of the crop production in the modern era of climate change.The current study aimed to assess the impact of water and N management on the productivity of irrigated rice cultivars.In the context,a field observation was done at the research farm of Bangladesh Agricultural University,Mymensingh,during dry seasons in consecutive two years(2018–2019 and 2019–2020).The experiments were set up following split-plot design assigning water management in the main plots,nitrogen management in the sub-plots,and the cultivars were approved in the split-split plot with three replications.After two years observation,it was revealed that rice cultivar Binadhan-8 gave the maximum value of leaf area index,number effective tillers hill-1 and grains panicle-1 which lead to the higher grain yield(GY).Substantial relationships were observed among the concentration of N,growth,total dry matter(TDM)and N content,N uptake,N utilization effectiveness,and GY.However,with little exception,the Combined effect of water and N,cultivars and water management were varied significantly for all parameters.Finally,the results of the current study concluded that application of irrigation at 8 days after the disappearance of ponded water and source of 105 kg N ha-1 from PU+Poultry manure are the best management approach for the excellent performance of rice cultivar Binadhan-8.
基金support from the National Natural Science Foundation of China(52174034)the Sichuan Science and Technology Program(2021YFH0081).
文摘Cold production is a challenge in the case of heavy oil because of its high viscosity and poor fluidity in reservoir conditions.Alkali-cosolvent-polymer flooding is a type of microemulsion flooding with low costs and possible potential for heavy oil reservoirs.However,the addition of polymer may cause problems with injection in the case of highly viscous oil.Hence,in this study the feasibility of alkali-cosolvent(AC)flooding in heavy oil reservoirs was investigated via several groups of experiments.The interfacial tension between various AC formulations and heavy crude oil was measured to select appropriate formulations.Phase behavior tests were performed to determine the most appropriate formulation and conditions for the generation of a microemulsion.Sandpack flooding experiments were carried out to investigate the displacement efficiency of the selected Ac formulation.The results showed that the interfacial tension between an AC formulation and heavy oil could be reduced to below 1o-3 mN/m but differed greatly between different types of cosolvent.A butanol random polyether series displayed good performance in reducing the water-oil interfacial tension,which made it possible to form a Type Il microemulsion in reservoir conditions.According to the results of the phase behavior tests,the optimal salinity for different formulations with four cosolvent concentrations(0.5 wt%,1 wt%,2 wt%,and 3 wt%)was 4000,8000,14000,and 20000 ppm,respectively.The results of rheological measurements showed that Type Ill microemulsion had a viscosity that was ten times that of water.The results of sandpack flooding experiments showed that,in comparison with waterflooding,the injection of a certain Ac formulation slug could reduce the injection pressure.The pressure gradient during waterflooding and AC flooding was around 870 and 30-57 kPa/m,respectively.With the addition of an AC slug,the displacement efficiency was 30%-50%higher than in the case of waterflooding.