In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy ...In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.展开更多
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl...Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.展开更多
The objective of the present study is an experimental investigation of diffusion combustion of round microjets,i.e.,mixtures of hydrogen with methane,helium,and nitrogen.It is found that the evolution of burning micro...The objective of the present study is an experimental investigation of diffusion combustion of round microjets,i.e.,mixtures of hydrogen with methane,helium,and nitrogen.It is found that the evolution of burning microjets is associated with generation of a“bottleneck flame region”close to the nozzle exit,as it was observed earlier during hydrogen combustion.Combustion of a mixture of hydrogen and methane with increasing flow velocity occurs with the transformation of the torch.At first,a torch stabilized on the nozzle is observed,then it is divided into a stabilized part in contact with the nozzle and into a raised part of the torch.The combustion process occurs in two areas.A further increase in velocity promotes the breakdown of the raised torch,but maintains combustion in the nozzle area.The results on hydrogen/methane combustion are obtained in a smaller range of the microjet velocity than those of a hydrogen microjet.Somewhat similar data are derived for other gas additives.To make combustion of gas mixtures more stable with increasing microjet velocity,one has to increase the portion of hydrogen in the gas mixture or reduce the fractions of other gas additives.展开更多
Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Com...Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases.展开更多
ZnO nanosheets doped with yttrium(Y) were synthesized via a solution combustion method using zinc nitrate and tartaric acid as raw materials.The scanning electron microscopy and X-ray powder diffraction were used to...ZnO nanosheets doped with yttrium(Y) were synthesized via a solution combustion method using zinc nitrate and tartaric acid as raw materials.The scanning electron microscopy and X-ray powder diffraction were used to characterize ZnO nanosheets and the gas sensing properties of them were investigated.The results show that the as-synthesized ZnO nanosheets with diameters of20-100 nm have a wurtzite structure with rough surface.The sensor made from the 2%Y-doped ZnO nanosheets exhibits a stronger response toward 100x10-6(volume fraction) ethanol,its sensitivity at 300℃ is 17.50,and its optimal operating temperature(300℃)is lower than that of the pure ZnO(330℃).The obvious sensitivity(about 2.5) can be observed at the volume fraction of ethanol as low as 5×10-(-6),while its the response time is only 2s at 300℃.Moreover,the Y-doped ZnO sensor has a better selectivity to ethanol than other gases.展开更多
This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physi...This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physical and mathematical models are reasonable.The results show that the flame height and the excess air ratios depend on the system pressure drop but not on the absolute pressure at the combustion chamber.The pressure drop and the amount of combustion air have an inverse relationship with CO generation,and they also impact on the temperature and velocity fields.To reduce CO emission,a stronger fan is needed to provide extra pressure head to ensure that enough combustion air is introduced into the system.This study provides a useful research tool to develop products through computational fluid dynamic analysis and laboratory testing.展开更多
The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth ...The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.展开更多
This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter ...This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter by determining its environmental conditions using data from geochemical analysis of core(pyrolysis)and oil(biomarkers and carbon isotopic compositions)samples.According to the geochemical parameters obtained by pyrolysis,the oil generation potential of the original rocks of most studied samples varies from poor to rich.The facies–genetic organic matter is predominantly humic and less frequently humus–sapropel,indicating organic matter accumulation in the studied samples were under moderately reducing conditions(kerogenⅢand Ⅱ types)and coastal–marine environments(kerogen typeⅠ).The carbon isotopic compositions of oils derived from the Jurassic deposits of the Aryskum Depression also indicate the sapropelic and mixed humic–sapropelic type of organic matter(kerogenⅡandⅠ).Biomarker analysis of oils indicates original organic matter formation in an anoxic environment.展开更多
With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of inv...With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative.展开更多
In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned o...In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.展开更多
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi...The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.展开更多
Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and ...Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration.展开更多
The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustio...The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustion of coal should be considered.The risk assessment of gas control and spontaneous combustion of coal under gas drainage in a tunnel was investigated at different gas drainage rates.The distributions of the air volume along the working face,the gas management effects and the width of the oxidation zone were subjected to risk analysis.As the simulation results showed,with increasing gas drainage rate,although the safety of gas dilution by ventilation was assured,the intensifying air leakage caused the oxidation zone to move into the deeper gob and led to an increase in the width of the oxidation zone.A risk assessment method was proposed to determine a suitable gas drainage rate for the upper tunnel.The correctness of the risk assessment and the validity of the numerical modelling were confirmed by the field measurements.展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conduc...The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.展开更多
Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was stud...Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.展开更多
The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorptio...The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorption of NO2 by water. In this pressure range, the NO conversion rates calculated using the existing kinetic constants are often higher than those obtained experimentally. This study aimed to achieve the regression of kinetic parameters of NO oxidation based on the existing experimental results and theoretical models.Based on three existing NO oxidation mechanisms, first, the expressions for NO conversion against residence time were derived. By minimizing the mean-square errors of NO conversion ratio, the optimum kinetic rate constants were obtained. Without considering the reverse reaction for NO oxidation, similar mean-square errors for NO conversion ratio were calculated. Considering the reverse reaction for NO oxidation based on the termolecular reaction mechanism, the minimum mean-square error for NO conversion ratio was obtained. Thus, the optimum NO oxidation rate in the pressure range 0.1–3 MPa can be expressed as follows:-d[NO]/dt=d[NO2]/dt=0.0026[NO]2[O2]-0.0034[NO2]2 Detailed elementary reactions for N2/NO/NO2/O2 system were established to simulate the NO oxidation rate. A sensitivity analysis showed that the critical elementary reaction is 2 NO + O2? 2 NO2. However, the simulated NO conversions at a high pressure of 10–30 bar are still higher than the experimental values and similar to those obtained from the models without considering the reverse reaction for NO oxidation.展开更多
This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-...This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-isothermal mass losses of the oxidized and pyrolyzed cokes were thoroughly examined.The results indicated that the oxidized coke could be combusted at a lower temperature compared to the pyrolyzed coke due primarily to their differences in the molecular polarity and microstructure.Kinetic triplets of coke combustion were determined using iso-conversional models and one advanced integral master plots method.The activation energy values of the oxidized and pyrolyzed cokes varied in the range of 130-153 k J/mol and 95-120 kJ/mol,respectively.The most appropriate reaction model of combustion of the oxidized and pyrolyzed cokes followed three-dimensional diffusion model(D_(3)) and random nucleation and subsequent growth model(F_(1)),respectively.These observations assisted in building the numerical model of these two types of cokes to simulate the ISC process.展开更多
We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins o...We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.展开更多
Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads an...Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads and different equivalence ratios (φ=0.83-1.25) with engine speed of 1200 r/min using blends made of 70 vol.% gasoline and 30 vol.% butanol isomers (N30, S30, I30 and T30). The results indicated that compared with gasoline, all butanol isomer blends have higher cylinder pressure. N30 has the highest and most advanced peak pressure, and T30 shows a higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE). N30 presents a lower UHC emissions and I30 has slightly higher CO emissions than other blends. For unregulated emissions, compared with gasoline, butanol isomer blends have higher acetaldehyde, and N30 produces a higher emission of 1,3-butadiene than other blends. A reduction in benzene, toluene, ethylbenzene and xylene (BTEX) has been found with butanol isomer blends.展开更多
基金support from the National Key R&D Program of China(Grant No.2022YFC3004704)the National Natural Science Foundation of China(Grant No.52374241)the National Natural Science Foundation of China Youth Foundation(Grant No.52104230).
文摘In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.
基金supported by the National Natural Science Foundation of China(21978092).
文摘Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.
基金carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation,Agreement dated 24.04.2024,No.075-15-2024-543.
文摘The objective of the present study is an experimental investigation of diffusion combustion of round microjets,i.e.,mixtures of hydrogen with methane,helium,and nitrogen.It is found that the evolution of burning microjets is associated with generation of a“bottleneck flame region”close to the nozzle exit,as it was observed earlier during hydrogen combustion.Combustion of a mixture of hydrogen and methane with increasing flow velocity occurs with the transformation of the torch.At first,a torch stabilized on the nozzle is observed,then it is divided into a stabilized part in contact with the nozzle and into a raised part of the torch.The combustion process occurs in two areas.A further increase in velocity promotes the breakdown of the raised torch,but maintains combustion in the nozzle area.The results on hydrogen/methane combustion are obtained in a smaller range of the microjet velocity than those of a hydrogen microjet.Somewhat similar data are derived for other gas additives.To make combustion of gas mixtures more stable with increasing microjet velocity,one has to increase the portion of hydrogen in the gas mixture or reduce the fractions of other gas additives.
基金This paper is supported by the National Key R&D Program of China(2017YFB0601805).
文摘Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases.
基金Project(61079010)supported by the National Natural Science Foundation of ChinaProject(3122013P001)supported by the Significant Pre-research Funds of Civil Aviation University of ChinaProject(MHRD20140209)supported by the Science and Technology Innovation Guide Funds of Civil Aviation Administration of China
文摘ZnO nanosheets doped with yttrium(Y) were synthesized via a solution combustion method using zinc nitrate and tartaric acid as raw materials.The scanning electron microscopy and X-ray powder diffraction were used to characterize ZnO nanosheets and the gas sensing properties of them were investigated.The results show that the as-synthesized ZnO nanosheets with diameters of20-100 nm have a wurtzite structure with rough surface.The sensor made from the 2%Y-doped ZnO nanosheets exhibits a stronger response toward 100x10-6(volume fraction) ethanol,its sensitivity at 300℃ is 17.50,and its optimal operating temperature(300℃)is lower than that of the pure ZnO(330℃).The obvious sensitivity(about 2.5) can be observed at the volume fraction of ethanol as low as 5×10-(-6),while its the response time is only 2s at 300℃.Moreover,the Y-doped ZnO sensor has a better selectivity to ethanol than other gases.
文摘This paper simulates the combustion system of a regular tankless gas water heater under different static pressure conditions.The simulation results are in accordance with the test results.It proves that the used physical and mathematical models are reasonable.The results show that the flame height and the excess air ratios depend on the system pressure drop but not on the absolute pressure at the combustion chamber.The pressure drop and the amount of combustion air have an inverse relationship with CO generation,and they also impact on the temperature and velocity fields.To reduce CO emission,a stronger fan is needed to provide extra pressure head to ensure that enough combustion air is introduced into the system.This study provides a useful research tool to develop products through computational fluid dynamic analysis and laboratory testing.
基金funded by projects of the National Natural Science Foundation of China(Nos.:42272167,U19B6003 and 41772153)projects of the Science&Technology Department of Sinopec(Nos.:P22121,P21058-8 and P23167).
文摘The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.
基金Funding from the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan under Grant Agreement No.AP13268843.
文摘This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter by determining its environmental conditions using data from geochemical analysis of core(pyrolysis)and oil(biomarkers and carbon isotopic compositions)samples.According to the geochemical parameters obtained by pyrolysis,the oil generation potential of the original rocks of most studied samples varies from poor to rich.The facies–genetic organic matter is predominantly humic and less frequently humus–sapropel,indicating organic matter accumulation in the studied samples were under moderately reducing conditions(kerogenⅢand Ⅱ types)and coastal–marine environments(kerogen typeⅠ).The carbon isotopic compositions of oils derived from the Jurassic deposits of the Aryskum Depression also indicate the sapropelic and mixed humic–sapropelic type of organic matter(kerogenⅡandⅠ).Biomarker analysis of oils indicates original organic matter formation in an anoxic environment.
基金the financial support from the National Natural Science Foundation of China(71934004)Key Projects of the National Social Science Foundation(23AZD065)the Project of the CNOOC Energy Economics Institute(EEI-2022-IESA0009)。
文摘With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative.
文摘In the pursuit of global net zero carbon emissions and climate change mitigation,ongoing research into sustainable energy sources and emission control is paramount.This review examines methane leakage from abandoned oil and gas(AOG)wells,focusing particularly on Lubbock,a geographic area situated within the larger region known as the Permian Basin in West Texas,United States.The objective is to assess the extent and environmental implications of methane leakage from these wells.The analysis integrates pertinent literature,governmental and industry data,and prior Lubbock reports.Factors affecting methane leakage,including well integrity,geological characteristics,and human activities,are explored.Our research estimates 1781 drilled wells in Lubbock,forming a foundation for targeted assessments and monitoring due to historical drilling trends.The hierarchy of well statuses in Lubbock highlights the prevalence of“active oil wells,”trailed by“plugged and abandoned oil wells”and“inactive oil wells.”Methane leakage potential aligns with these well types,underscoring the importance of strategic monitoring and mitigation.The analysis notes a zenith in“drilled and completed”wells during 1980-1990.While our study's case analysis and literature review reiterate the critical significance of assessing and mitigating methane emissions from AOG wells,it's important to clarify that the research does not directly provide methane leakage data.Instead,it contextualizes the issue's magnitude and emphasizes the well type and status analysis's role in targeted mitigation efforts.In summary,our research deepens our understanding of methane leakage,aiding informed decision-making and policy formulation for environmental preservation.By clarifying well type implications and historical drilling patterns,we aim to contribute to effective strategies in mitigating methane emissions from AOG wells.
基金Supported by the PetroChina Science and Technology Project(2023ZG18).
文摘The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.
基金Supported by the CNOOC Major Technology Project During the 14th FIVE-YEAR PLAN PERIOD(KJGG2022-0403)CNOOC Major Technology Project(KJZH-2021-0003-00).
文摘Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration.
基金financially sponsored by the National Natural Science Foundation of China (Nos. 51774114 and 51404090)
文摘The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustion of coal should be considered.The risk assessment of gas control and spontaneous combustion of coal under gas drainage in a tunnel was investigated at different gas drainage rates.The distributions of the air volume along the working face,the gas management effects and the width of the oxidation zone were subjected to risk analysis.As the simulation results showed,with increasing gas drainage rate,although the safety of gas dilution by ventilation was assured,the intensifying air leakage caused the oxidation zone to move into the deeper gob and led to an increase in the width of the oxidation zone.A risk assessment method was proposed to determine a suitable gas drainage rate for the upper tunnel.The correctness of the risk assessment and the validity of the numerical modelling were confirmed by the field measurements.
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.
基金Projects(51174253,51304245)supported by the National Natural Science Foundation of ChinaProject(2013bjjxj015)supported by the Outstanding and Creative Doctor Scholarship of Central South University,ChinaProject supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.
基金Project CPEUKF08-04 support by the Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education of China
文摘Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.
基金Supported by the Shanghai Pujiang Program(16PJ1407900)
文摘The removal of NO from oxy-fuel combustion is typically incorporated in sour gas compression purification process. This process involves the oxidation of NO to NO2 at a high pressure of 1–3 MPa, followed by absorption of NO2 by water. In this pressure range, the NO conversion rates calculated using the existing kinetic constants are often higher than those obtained experimentally. This study aimed to achieve the regression of kinetic parameters of NO oxidation based on the existing experimental results and theoretical models.Based on three existing NO oxidation mechanisms, first, the expressions for NO conversion against residence time were derived. By minimizing the mean-square errors of NO conversion ratio, the optimum kinetic rate constants were obtained. Without considering the reverse reaction for NO oxidation, similar mean-square errors for NO conversion ratio were calculated. Considering the reverse reaction for NO oxidation based on the termolecular reaction mechanism, the minimum mean-square error for NO conversion ratio was obtained. Thus, the optimum NO oxidation rate in the pressure range 0.1–3 MPa can be expressed as follows:-d[NO]/dt=d[NO2]/dt=0.0026[NO]2[O2]-0.0034[NO2]2 Detailed elementary reactions for N2/NO/NO2/O2 system were established to simulate the NO oxidation rate. A sensitivity analysis showed that the critical elementary reaction is 2 NO + O2? 2 NO2. However, the simulated NO conversions at a high pressure of 10–30 bar are still higher than the experimental values and similar to those obtained from the models without considering the reverse reaction for NO oxidation.
基金supported by Chinese Postdoctoral Science Foundation (2021M692696)the National Science and Technology Project (2016ZX05058-003-017)Sichuan Science and Technology Program (2021YFH0081)。
文摘This work aimed at investigating the crucial factor in building and maintaining the combustion front during in-situ combustion(ISC),oxidized coke and pyrolyzed coke.The surface morphologies,elemental contents,and non-isothermal mass losses of the oxidized and pyrolyzed cokes were thoroughly examined.The results indicated that the oxidized coke could be combusted at a lower temperature compared to the pyrolyzed coke due primarily to their differences in the molecular polarity and microstructure.Kinetic triplets of coke combustion were determined using iso-conversional models and one advanced integral master plots method.The activation energy values of the oxidized and pyrolyzed cokes varied in the range of 130-153 k J/mol and 95-120 kJ/mol,respectively.The most appropriate reaction model of combustion of the oxidized and pyrolyzed cokes followed three-dimensional diffusion model(D_(3)) and random nucleation and subsequent growth model(F_(1)),respectively.These observations assisted in building the numerical model of these two types of cokes to simulate the ISC process.
基金supported by the State of Texas Advanced Resource Recovery(STARR)programthe Bureau of Economic Geology's Tight Oil Resource Assessment(TORA)Mudrock Systems Research Laboratory(MSRL)consortia。
文摘We present a systematic summary of the geological characteristics,exploration and development history and current state of shale oil and gas in the United States.The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods:Middle Ordovician,Middle-Late Devonian,Early Carboniferous(Middle-Late Mississippi),Early Permian,Late Jurassic,and Late Cretaceous(Cenomanian-Turonian).Depositional environments for these shales include intra-cratonic basins,foreland basins,and passive continental margins.Paleozoic hydrocarbon-rich shales are mainly developed in six basins,including the Appalachian Basin(Utica and Marcellus shales),Anadarko Basin(Woodford Shale),Williston Basin(Bakken Shale),Arkoma Basin(Fayetteville Shale),Fort Worth Basin(Barnett Shale),and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin.The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin(Haynesville and Eagle Ford)or in various Rocky Mountain basins(Niobrara Formation,mainly in the Denver and Powder River basins).The detailed analysis of shale plays reveals that the shales are different in facies and mineral components,and"shale reservoirs"are often not shale at all.The United States is abundant in shale oil and gas,with the in-place resources exceeding 0.246×10^(12)t and 290×10^(12)m^(3),respectively.Before the emergence of horizontal well hydraulic fracturing technology to kick off the"shale revolution",the United States had experienced two decades of exploration and production practices,as well as theory and technology development.In 2007-2023,shale oil and gas production in the United States increased from approximately 11.2×10^(4)tons of oil equivalent per day(toe/d)to over 300.0×10^(4)toe/d.In 2017,the shale oil and gas production exceeded the conventional oil and gas production in the country.In 2023,the contribution from shale plays to the total U.S.oil and gas production remained above 60%.The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies,with much of the recent effort focused on“cube development”or“co-development”.Other efforts to improve productivity and efficiency include refracturing,enhanced oil recovery,and drilling of“U-shaped”wells.Given the significant resources base and continued technological improvements,shale oil and gas production will continue to contribute significant volumes to total U.S.hydrocarbon production.
基金Projects(51776016,51606006) supported by the National Natural Science Foundation of ChinaProjects(3172025,3182030) supported by Beijing Natural Science Foundation,China+4 种基金Project(2017YFB0103401) supported by National Key Research and Development ProgramProject(NELMS2017A10) funded by the National Engineering Laboratory for Mobile Source Emission Control Technology,ChinaProject(2018RC017) supported by the Talents Foundation of Beijing Jiaotong University,ChinaProject(DE-EE0006864) supported by the Department of EnergyProject(201507090044) supported by China Scholarship Council
文摘Effects of butanol isomers on characteristics of combustion and emission were studied on PFI SI engine. Experiments were operated under the condition of 3 and 5 bar brake mean effective pressure (BMEP) engine loads and different equivalence ratios (φ=0.83-1.25) with engine speed of 1200 r/min using blends made of 70 vol.% gasoline and 30 vol.% butanol isomers (N30, S30, I30 and T30). The results indicated that compared with gasoline, all butanol isomer blends have higher cylinder pressure. N30 has the highest and most advanced peak pressure, and T30 shows a higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE). N30 presents a lower UHC emissions and I30 has slightly higher CO emissions than other blends. For unregulated emissions, compared with gasoline, butanol isomer blends have higher acetaldehyde, and N30 produces a higher emission of 1,3-butadiene than other blends. A reduction in benzene, toluene, ethylbenzene and xylene (BTEX) has been found with butanol isomer blends.