Carbonate rock has the characteristics of complicated accumulation rules,large-scale development,high yield but unstable production.Therefore,the management and control of surface engineering projects of carbonate roc...Carbonate rock has the characteristics of complicated accumulation rules,large-scale development,high yield but unstable production.Therefore,the management and control of surface engineering projects of carbonate rock oil and gas reservoirs faces huge difficulties and challenges.The construction of surface engineering should conform to the principle of integrated underground and ground construction and adapt to the oilfield development model.This paper takes the newly added area A of the carbonated oil field as an example to study the ground engineering under the rolling development mode and aims to provide the constructive ideas for the surface engineering under rolling development mode.The overall regional process design adheres to the design concept of"environmental protection,efficiency,and innovation",strictly follows the design specifications,and combines reservoir engineering and oil production engineering programs,oil and gas physical properties and chemical composition,product programs,ground natural conditions,etc.According to the technical and economic analysis and comparison of area A,this paper has worked out a suitable surface engineering construction,pipeline network layout and oil and gas gathering and transportation plan for area A.Some auxiliary management recommendations are also proposed in this paper,like sand prevention management and HSE management for carbonate reservoirs.展开更多
To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in ...To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in survey,containing complex type and numerous amount of ecologically sensitive space and ecological red line involved in oil and gas field enterprises,scientific nature of delimitation,lack of strong support of laws and regulations for forced withdrawal of oil and gas production facilities in these areas,some countermeasures and suggestions were proposed,such as further evaluating and combing scope and functional zoning of existing environmentally sensitive areas and ecological red lines,treating differently,enhancing pertinence of prohibition in ecologically sensitive regions,declining blindness of the withdrawal of oil and gas facilities in environmentally sensitive areas,strengthening seriousness of approval of exploration and mining rights of oil and gas resources,and establishing strategic reserve exploration and hierarchical development mechanism. Moreover,oil and gas field enterprises should integrate more efforts to ① accelerate to find out the current situation of environmental quality,② adhere to developing in protection,and protecting in development,③ increase attention and participation strengthen of providing technical support for national oil and gas exploration and development strategy evaluation,④ accelerate communication and docking with local governments on the ecological red line,⑤ actively strive to be included in the positive list management of local governments,⑥ accelerate to establish and perfect primary database of oil and gas production and facilities construction,and ⑦ document management information system of the ecological red line.展开更多
This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technol...This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.展开更多
Based on about 20 years of accumulated experience and knowledge of oil and gas field development in overseas countries and regions for China's oil companies, the development features, ideas, models and plan design...Based on about 20 years of accumulated experience and knowledge of oil and gas field development in overseas countries and regions for China's oil companies, the development features, ideas, models and plan designing strategies of overseas oil and gas fields were comprehensively summarized. Overseas oil and gas field development has ten major features, such as non-identity project resource, diversity of contract type, complexity of cooperation model, and so on. The overseas oil and gas field development aims at the maximization of production and benefit during the limited contract period, so the overseas oil and gas field development models are established as giving priority to production by natural energy, building large-scale production capacity, putting into production as soon as possible, realizing high oil production recovery rate, and achieving rapid payback period of investment. According to the overseas contract mode, a set of strategies for overseas oil and gas field development plans were made. For tax systems contracts, the strategy is to adopt the mode of "first fat and then thinner, easier in the first and then harder", that is, early investment pace, production increase rate, development workload and production were decided by the change of tax stipulated in the contract. For production share contracts, the strategy is to give priority to high production with a few wells at a high production recovery rate to increase the cost-oil and shorten the period of payback. For technical service contracts, the strategy is that the optimal production target and workload of the project were determined by the return on investment, so as to ensure that the peak production and stable production periods meet the contract requirements.展开更多
Analysis is given to energy sources home and abroad, the employed and customer market in oceanographic engineering and necessity of its development. Risk out of system is put forward just after marine industry into oc...Analysis is given to energy sources home and abroad, the employed and customer market in oceanographic engineering and necessity of its development. Risk out of system is put forward just after marine industry into oceanographic engineering market. It also metions several influencing factors including politics, finance and ocean engineering materials.展开更多
The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify th...The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas,the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper.Meanwhile,the tectonic stress magnitude in these areas since the Mesozoic was restored.The laws state that the tectonic stress varied with depth was revealed,followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes.These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present,as well as previous research achievements.The results of this paper demonstrate that the third episode of Yanshanian Movement(Yanshanian III)had the maximum activity intensity and tremendously influenced the structural pattern in the study area.The maximum horizontal principal stress of Yanshanian III varied with depth as follows:0.0168 x+37.001(MPa),R^2=0.8891.The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation,west Sichuan Basin,of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa.In addition,the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221(MPa),R^2=0.7868 in Wuling Mountain area.Meanwhile,it was determined to be 0.0221 x+9.4733(MPa),R^2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247(MPa),R^2=0.8064 in the whole study area.These research results will not only provide data for the simulation of stress field,the evaluation of deformation degree,and the prediction of structural fractures,but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.展开更多
On the basis of reviewing the development history of drilling engineering technology over a century, this paper describes the technical and scientific background of downhole control engineering, discusses its basic is...On the basis of reviewing the development history of drilling engineering technology over a century, this paper describes the technical and scientific background of downhole control engineering, discusses its basic issues, discipline frame and main study contents, introduces the research progress of downhole control engineering in China over the past 30 years, and envisions the development direction of downhole control engineering in the future. The author proposed the study subject of well trajectory control theory and technology in 1988, and further proposed the concept of downhole control engineering in 1993. Downhole control engineering is a discipline branch, which applies the perspectives and methods of engineering control theory to solve downhole engineering control issues in oil and gas wells; meanwhile, it is an application technology field with interdisciplinarity. Downhole control engineering consists of four main aspects; primarily, investigations about dynamics of downhole system and analysis methods of control signals; secondly, designs of downhole control mechanisms and systems, research of downhole parameters collections and transmission techniques; thirdly, development of downhole control engineering products; fourthly, development of experimental methods and the laboratories. Over the past 30 years, the author and his research group have achieved a number of progress and accomplishments in the four aspects mentioned above. As a research field and a disciplinary branch of oil and gas engineering, downhole control engineering is stepping into a broader and deeper horizon.展开更多
The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a numb...The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a number of large and medium scale gas reservoirs including Keshen 2,Keshen 5 and Keshen 8 have been discovered,that are characterized by ultra depth,ultra-high pressure,ultra-low porosity,ultra-low permeability,high temperature and high pressure.With natural gas geological reserves of nearly trillion cubic meters and production capacity of nearly 5.5 billion cubic meters,the Keshen gas field is the main natural gas producing area in Tarim Oilfield.The Keshen gas field is located in a series of thrusting imbrication structures in the Kelasu structural belt of Kuqa foreland thrust belt.The salt roof structure,plastic rheology of salt beds and pre-salt faulted anticlinal structure constitute the large wedge-shaped thrust body.The thick delta sandstone of the Cretaceous Bashijike Formation is widely distributed,and it forms the superior reservoir-caprock combination with overlying Paleogene thick gypsum-salt bed.The deep Jurassic-Triassic oil and gas migrate vertically along fault system formed in Late Himalaya,break through the thick Cretaceous mudstone and move laterally along the fracture system of the pre-salt reservoirs,to form anticline and fault anticline high pressure reservoir groups.Through near ten years of studies,the three-dimensional seismic acquisition and processing technology for complex mountainous areas,extrusion salt-related structural modeling technology and fractured low-porosity sandstone reservoir evaluation technology have been established,which lay a foundation for realization of oil and gas exploration objectives.Logging acquisition and evaluation technology for high temperature,high pressure,ultra-deep and low-porosity sandstone gas reservoirs,and efficient development technology for fractured tight sandstone gas reservoirs have been developed,which provide a technical support for efficient exploration&development and rapid production of the Keshen gas field.展开更多
During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical me...During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical method for predicting the wax precipitation region in oil strings was proposed based on the temperature and pressure fields of deep water test string and the wax precipitation calculation model. And the factors affecting the wax precipitation region were analyzed. The results show that: the wax precipitation region decreases with the increase of production rate, and increases with the decrease of geothermal gradient, increase of water depth and drop of water-cut of produced fluid, and increases slightly with the increase of formation pressure. Due to the effect of temperature and pressure fields, wax precipitation region is large in test strings at the beginning of well production. Wax precipitation region gradually increases with the increase of shut-in time. These conclusions can guide wax prevention during the testing of deep water oil well, to ensure the success of the test.展开更多
文摘Carbonate rock has the characteristics of complicated accumulation rules,large-scale development,high yield but unstable production.Therefore,the management and control of surface engineering projects of carbonate rock oil and gas reservoirs faces huge difficulties and challenges.The construction of surface engineering should conform to the principle of integrated underground and ground construction and adapt to the oilfield development model.This paper takes the newly added area A of the carbonated oil field as an example to study the ground engineering under the rolling development mode and aims to provide the constructive ideas for the surface engineering under rolling development mode.The overall regional process design adheres to the design concept of"environmental protection,efficiency,and innovation",strictly follows the design specifications,and combines reservoir engineering and oil production engineering programs,oil and gas physical properties and chemical composition,product programs,ground natural conditions,etc.According to the technical and economic analysis and comparison of area A,this paper has worked out a suitable surface engineering construction,pipeline network layout and oil and gas gathering and transportation plan for area A.Some auxiliary management recommendations are also proposed in this paper,like sand prevention management and HSE management for carbonate reservoirs.
文摘To cooperate with the five ministries and commissions of the state to carry out joint investigation on the environmentally sensitive areas involved in oil and gas exploration and development,for the problems found in survey,containing complex type and numerous amount of ecologically sensitive space and ecological red line involved in oil and gas field enterprises,scientific nature of delimitation,lack of strong support of laws and regulations for forced withdrawal of oil and gas production facilities in these areas,some countermeasures and suggestions were proposed,such as further evaluating and combing scope and functional zoning of existing environmentally sensitive areas and ecological red lines,treating differently,enhancing pertinence of prohibition in ecologically sensitive regions,declining blindness of the withdrawal of oil and gas facilities in environmentally sensitive areas,strengthening seriousness of approval of exploration and mining rights of oil and gas resources,and establishing strategic reserve exploration and hierarchical development mechanism. Moreover,oil and gas field enterprises should integrate more efforts to ① accelerate to find out the current situation of environmental quality,② adhere to developing in protection,and protecting in development,③ increase attention and participation strengthen of providing technical support for national oil and gas exploration and development strategy evaluation,④ accelerate communication and docking with local governments on the ecological red line,⑤ actively strive to be included in the positive list management of local governments,⑥ accelerate to establish and perfect primary database of oil and gas production and facilities construction,and ⑦ document management information system of the ecological red line.
文摘This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.
基金Supported by the China National Science and Technology Major Project(2017ZX05030)
文摘Based on about 20 years of accumulated experience and knowledge of oil and gas field development in overseas countries and regions for China's oil companies, the development features, ideas, models and plan designing strategies of overseas oil and gas fields were comprehensively summarized. Overseas oil and gas field development has ten major features, such as non-identity project resource, diversity of contract type, complexity of cooperation model, and so on. The overseas oil and gas field development aims at the maximization of production and benefit during the limited contract period, so the overseas oil and gas field development models are established as giving priority to production by natural energy, building large-scale production capacity, putting into production as soon as possible, realizing high oil production recovery rate, and achieving rapid payback period of investment. According to the overseas contract mode, a set of strategies for overseas oil and gas field development plans were made. For tax systems contracts, the strategy is to adopt the mode of "first fat and then thinner, easier in the first and then harder", that is, early investment pace, production increase rate, development workload and production were decided by the change of tax stipulated in the contract. For production share contracts, the strategy is to give priority to high production with a few wells at a high production recovery rate to increase the cost-oil and shorten the period of payback. For technical service contracts, the strategy is that the optimal production target and workload of the project were determined by the return on investment, so as to ensure that the peak production and stable production periods meet the contract requirements.
文摘Analysis is given to energy sources home and abroad, the employed and customer market in oceanographic engineering and necessity of its development. Risk out of system is put forward just after marine industry into oceanographic engineering market. It also metions several influencing factors including politics, finance and ocean engineering materials.
基金The study associated with this paper was supported by projects of China Geological Survey(DD20190085,DD20160183,1212011120976).
文摘The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas,the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper.Meanwhile,the tectonic stress magnitude in these areas since the Mesozoic was restored.The laws state that the tectonic stress varied with depth was revealed,followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes.These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present,as well as previous research achievements.The results of this paper demonstrate that the third episode of Yanshanian Movement(Yanshanian III)had the maximum activity intensity and tremendously influenced the structural pattern in the study area.The maximum horizontal principal stress of Yanshanian III varied with depth as follows:0.0168 x+37.001(MPa),R^2=0.8891.The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation,west Sichuan Basin,of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa.In addition,the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221(MPa),R^2=0.7868 in Wuling Mountain area.Meanwhile,it was determined to be 0.0221 x+9.4733(MPa),R^2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247(MPa),R^2=0.8064 in the whole study area.These research results will not only provide data for the simulation of stress field,the evaluation of deformation degree,and the prediction of structural fractures,but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.
文摘On the basis of reviewing the development history of drilling engineering technology over a century, this paper describes the technical and scientific background of downhole control engineering, discusses its basic issues, discipline frame and main study contents, introduces the research progress of downhole control engineering in China over the past 30 years, and envisions the development direction of downhole control engineering in the future. The author proposed the study subject of well trajectory control theory and technology in 1988, and further proposed the concept of downhole control engineering in 1993. Downhole control engineering is a discipline branch, which applies the perspectives and methods of engineering control theory to solve downhole engineering control issues in oil and gas wells; meanwhile, it is an application technology field with interdisciplinarity. Downhole control engineering consists of four main aspects; primarily, investigations about dynamics of downhole system and analysis methods of control signals; secondly, designs of downhole control mechanisms and systems, research of downhole parameters collections and transmission techniques; thirdly, development of downhole control engineering products; fourthly, development of experimental methods and the laboratories. Over the past 30 years, the author and his research group have achieved a number of progress and accomplishments in the four aspects mentioned above. As a research field and a disciplinary branch of oil and gas engineering, downhole control engineering is stepping into a broader and deeper horizon.
基金The work was supported by the National Science and Technology Major Project of China(No.2016ZX05003-004).
文摘The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a number of large and medium scale gas reservoirs including Keshen 2,Keshen 5 and Keshen 8 have been discovered,that are characterized by ultra depth,ultra-high pressure,ultra-low porosity,ultra-low permeability,high temperature and high pressure.With natural gas geological reserves of nearly trillion cubic meters and production capacity of nearly 5.5 billion cubic meters,the Keshen gas field is the main natural gas producing area in Tarim Oilfield.The Keshen gas field is located in a series of thrusting imbrication structures in the Kelasu structural belt of Kuqa foreland thrust belt.The salt roof structure,plastic rheology of salt beds and pre-salt faulted anticlinal structure constitute the large wedge-shaped thrust body.The thick delta sandstone of the Cretaceous Bashijike Formation is widely distributed,and it forms the superior reservoir-caprock combination with overlying Paleogene thick gypsum-salt bed.The deep Jurassic-Triassic oil and gas migrate vertically along fault system formed in Late Himalaya,break through the thick Cretaceous mudstone and move laterally along the fracture system of the pre-salt reservoirs,to form anticline and fault anticline high pressure reservoir groups.Through near ten years of studies,the three-dimensional seismic acquisition and processing technology for complex mountainous areas,extrusion salt-related structural modeling technology and fractured low-porosity sandstone reservoir evaluation technology have been established,which lay a foundation for realization of oil and gas exploration objectives.Logging acquisition and evaluation technology for high temperature,high pressure,ultra-deep and low-porosity sandstone gas reservoirs,and efficient development technology for fractured tight sandstone gas reservoirs have been developed,which provide a technical support for efficient exploration&development and rapid production of the Keshen gas field.
基金Supported by the National Key Basic Research and Development Program(973 Program),China(2015CB251205)
文摘During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical method for predicting the wax precipitation region in oil strings was proposed based on the temperature and pressure fields of deep water test string and the wax precipitation calculation model. And the factors affecting the wax precipitation region were analyzed. The results show that: the wax precipitation region decreases with the increase of production rate, and increases with the decrease of geothermal gradient, increase of water depth and drop of water-cut of produced fluid, and increases slightly with the increase of formation pressure. Due to the effect of temperature and pressure fields, wax precipitation region is large in test strings at the beginning of well production. Wax precipitation region gradually increases with the increase of shut-in time. These conclusions can guide wax prevention during the testing of deep water oil well, to ensure the success of the test.