Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety man...Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.展开更多
A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is establis...A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is established to identify potential hazards in time.First,a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors:corrosion,external interference,material/construction,natural disasters,and function and operation.Next,the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method.Then,the TOPSIS of a multi-attribute decision-making theory is studied.The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines.The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS.Finally,the weight and the closeness coefficient are combined to determine the risk level of pipelines.Empirical research using a long-distance pipeline as an example is conducted,and adjustment factors are used to verify the model.Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible.The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive,rational,and scientific evaluation results.It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines.The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.展开更多
Since the development of offshore oil and gas, increased submarine oil and gas pipelines were installed. All the early steel pipes of submarine pipelines depended on importing because of the strict requirements of com...Since the development of offshore oil and gas, increased submarine oil and gas pipelines were installed. All the early steel pipes of submarine pipelines depended on importing because of the strict requirements of comprehensive properties, such as, anti-corrosion, resistance to pressure and so on. To research and develop domes- tic steel pipes used for the submarine pipeline, the Longitudinal-seam Submerged Arc Welded (LSAW) pipes were made of steel plates cut from leveled hot rolled coils by both the JCOE and UOE (the forming process in which the plate like the letter “J”, “C”, “0” or “U” shape, then expansion) forming processes. Furthermore, the mechanical properties of the pipe base metal and weld metal were tested, and the results were in accordance with the corresponding pipe specification API SPEC 5L or DNV- OS-FI01, which showed that domestic LSAW pipes could be used for submarine oil and gas pipelines.展开更多
According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main...According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main slide direction and pipelines perpendicular (approximately) to the main slide direction. If earth-retaining walls have been built for pipelines paralleling to the main slide direction, they will prevent the lands from sliding; On the contrary, without earth-retaining walls, the sharp broken rocks in the backfilling soil will scratch the safeguard of the pipeline when the landslides take place. Pipelines perpendicular to the main slide direction can be classified into four types according to the relative positions between pipelines and landslides: Pipelines over the slide planes, pipelines inside the fracture strips of slide planes, pipelines below the slide planes and pipelines behind the backsides of landslides. The different dynamical mechanisms of the process in which landslide acts against pipelines are analyzed based on whether the pipelines are equipped with fixed frusta, because the sliding resistance depends on whether and how many fixed frusta are equipped and the distance between frusta.展开更多
The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can...The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can be classified into three pipe classes,with exceeding probabilities over 50 years of 2%,5% and 10%,respectively.Performance-based design requires more information about ground motion,which should be obtained by evaluating seismic safety for pipeline engineering site.Different from a city's water pipeline network,the long-distance oil and gas pipeline system is a spatially linearly distributed system.For the uniform confidence of seismic safety,a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk.Considering the uncertainty of earthquake magnitude,the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis(DSHA).A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia.The estimation of fault displacement for a refined oil pipeline in Wenchuan MS8.0 earthquake is introduced as an example in this paper.展开更多
According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The fo...According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.展开更多
For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a sing...For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a single fiber. Through the fiber-scattering spectrum time domain detection combined with coded pulse sequence and Raman scattering spectrum is obtained, which realizes high-resolution temperature measurement and wide-band vibrational wave measurement. The experimental results show that, on 10 km optical fiber measurement, temperature resolution up to 0.1?C and vibration response frequency range 20 Hz - 5 kHz. This sensing system achieves temperature and vibration dual-parameter measurements with fiber optics, greatly simplifying the system and facilitating installation and it can be widely used in oil and gas pipeline monitoring.展开更多
The aim of this paper is to present the design and specifications of an integrated Delay Analysis Framework(DAF),which could be used to quantify the delay caused by the Risk Factors(RFs)in Oil and Gas Pipelines(OGPs)p...The aim of this paper is to present the design and specifications of an integrated Delay Analysis Framework(DAF),which could be used to quantify the delay caused by the Risk Factors(RFs)in Oil and Gas Pipelines(OGPs)projects in a simple and systematic way.The main inputs of the DAF are(i)the potential list of RFs in the projects and their impact levels on the projects and the estimated maximum and minimum duration of each task.Monte Carlo Simulation integrated within@Risk simulator was the key process algorithm that used to quantify the impact of delay caused by the associated RFs.The key output of the DAF is the amount of potential delay caused by RFs in the OGP project.The functionalities of the developed DAF were evaluated using a case study of newly developed OGP project,in the south of Iraq.It is found that the case study project might have delayed by 45 days if neglected the consideration of the RFs associated with the project at the construction stage.The paper concludes that identifying the associated RFs and analysing the potential delay in advance will help in reducing the construction delay and improving the effectiveness of the project delivery by taking suitable risk mitigation measures.展开更多
In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pi...In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies.展开更多
A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear ...A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear planning. And the optimization design model is applied to the practical design ofHejian Shijiazhuang oil transmission pipeline. outstanding economic and social benefits have beengained.展开更多
There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first establ...There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first established the finite element model of the strain of buried pipeline crossing a fault which effected by the size and shape of the trench.And it obtained new soil spring stiffness which considered different buried depth,bottom width of trench,trench slope and elastic modulus of soil.The mechanical analysis model of pipeline is established,and the limit state equation of pipeline is fitted.The reliability and sensitivity of the natural gas pipeline under fault action are analysed by a Monte Carlo method,and the error and accuracy are verified.When the pipeline is under tension,the sensitivity from large to small is buried depth,sand friction angle,pipe diameter,pipeline displacement,trench bottom width,trench depth,clay cohesion,trench slope and clay friction angle;when the pipeline is under pressure,the trench depth and clay cohesion have great influence.The findings of this study provide a reference for pipeline design and safety evaluation under fault action.展开更多
Oil and gas pipeline transportation,as a relatively safe way of oil and gas transportation,undertakes most of the transportation tasks of crude oil and natural gas.Oil and gas pipeline accidents affect a wide range of...Oil and gas pipeline transportation,as a relatively safe way of oil and gas transportation,undertakes most of the transportation tasks of crude oil and natural gas.Oil and gas pipeline accidents affect a wide range of consequences.Therefore,the oil and gas pipeline leakage detection is paid more and more attention.In this paper,ultra-low power methane gas sensor is selected to collect methane gas concentration in the air,and wireless network technology is used to build a wireless network sensor system with 4G function.Through the sensor distribution along the pipeline,it can intuitively and accurately judge whether there is a micro-leakage in the pipeline,and understand the diffusion situation after the leakage.The sensor system has high reliability and stability,and has high value of popularization and application.展开更多
With the rapid development of the offshore oil industries, submarine oil / gas pipelines have been widely used. Under the complicated submarine environmental conditions, the dynamic characteristics of pipelines show s...With the rapid development of the offshore oil industries, submarine oil / gas pipelines have been widely used. Under the complicated submarine environmental conditions, the dynamic characteristics of pipelines show some new features due to the existence of both internal and external flows. The paper is intended to investigate the vortex-induced vibration of the suspended pipeline span exposed to submarine steady flow. Especially, the effects of the flow inside the pipeline are taken into account. Its influences on the amplitude of pipeline response, and then on the fatigue life, are given in terms of the velocity of the internal flow.展开更多
s: Regarding the influencing factors in an optimal selection of pipeline design alternative as fuzzy variables with different weights, a fuzzy comprehensive assessment was applied to an optimal selection of the design...s: Regarding the influencing factors in an optimal selection of pipeline design alternative as fuzzy variables with different weights, a fuzzy comprehensive assessment was applied to an optimal selection of the design alternative. Giving the Lanzhou-Chengdu pipeline as an example to explain the process, the result shows that this method is acceptable.展开更多
Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are in...Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials.展开更多
A new quantitative risk assessment method for hot work is proposed based on the analytic hierarchy process(AHP)and fuzzy comprehensive evaluation(FCE).It can help pipeline companies realize the risk management of hot ...A new quantitative risk assessment method for hot work is proposed based on the analytic hierarchy process(AHP)and fuzzy comprehensive evaluation(FCE).It can help pipeline companies realize the risk management of hot work and further ensure the safe operation of oil and gas pipelines.Taking one natural gas pipeline in China as an example,this paper evaluates the risk of a single hot work in the spring of one natural gas pipeline in a high consequence region.First of all,the risk factors are determined with reference to the job safety analysis(JSA),and then experts were invited to fill out a questionnaire to collect their opinions.According to the results of the questionnaire,AHP is used to calculate the weight coefficients of the evaluation indicators,and FCE is used to evaluate the risk level of hot work.After calculation,the comprehensive risk score of hot work is 40.888.It belongs to a"general risk".This method can not only quantitatively evaluate the risk levels of hot work,but also reasonably sort the importance of various risk factors.It is helpful for the effective management of hot work and provides suggestions for implementing control measures.展开更多
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
文摘Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFC0805804,2017YFC0805801)
文摘A comprehensive and objective risk evaluation model of oil and gas pipelines based on an improved analytic hierarchy process(AHP)and technique for order preference by similarity to an ideal solution(TOPSIS)is established to identify potential hazards in time.First,a barrier model and fault tree analysis are used to establish an index system for oil and gas pipeline risk evaluation on the basis of five important factors:corrosion,external interference,material/construction,natural disasters,and function and operation.Next,the index weight for oil and gas pipeline risk evaluation is computed by applying the improved AHP based on the five-scale method.Then,the TOPSIS of a multi-attribute decision-making theory is studied.The method for determining positive/negative ideal solutions and the normalized equation for benefit/cost indexes is improved to render TOPSIS applicable for the comprehensive risk evaluation of pipelines.The closeness coefficient of oil and gas pipelines is calculated by applying the improved TOPSIS.Finally,the weight and the closeness coefficient are combined to determine the risk level of pipelines.Empirical research using a long-distance pipeline as an example is conducted,and adjustment factors are used to verify the model.Results show that the risk evaluation model of oil and gas pipelines based on the improved AHP–TOPSIS is valuable and feasible.The model comprehensively considers the risk factors of oil and gas pipelines and provides comprehensive,rational,and scientific evaluation results.It represents a new decision-making method for systems engineering in pipeline enterprises and provides a comprehensive understanding of the safety status of oil and gas pipelines.The new system engineering decision-making method is important for preventing oil and gas pipeline accidents.
文摘Since the development of offshore oil and gas, increased submarine oil and gas pipelines were installed. All the early steel pipes of submarine pipelines depended on importing because of the strict requirements of comprehensive properties, such as, anti-corrosion, resistance to pressure and so on. To research and develop domes- tic steel pipes used for the submarine pipeline, the Longitudinal-seam Submerged Arc Welded (LSAW) pipes were made of steel plates cut from leveled hot rolled coils by both the JCOE and UOE (the forming process in which the plate like the letter “J”, “C”, “0” or “U” shape, then expansion) forming processes. Furthermore, the mechanical properties of the pipe base metal and weld metal were tested, and the results were in accordance with the corresponding pipe specification API SPEC 5L or DNV- OS-FI01, which showed that domestic LSAW pipes could be used for submarine oil and gas pipelines.
文摘According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main slide direction and pipelines perpendicular (approximately) to the main slide direction. If earth-retaining walls have been built for pipelines paralleling to the main slide direction, they will prevent the lands from sliding; On the contrary, without earth-retaining walls, the sharp broken rocks in the backfilling soil will scratch the safeguard of the pipeline when the landslides take place. Pipelines perpendicular to the main slide direction can be classified into four types according to the relative positions between pipelines and landslides: Pipelines over the slide planes, pipelines inside the fracture strips of slide planes, pipelines below the slide planes and pipelines behind the backsides of landslides. The different dynamical mechanisms of the process in which landslide acts against pipelines are analyzed based on whether the pipelines are equipped with fixed frusta, because the sliding resistance depends on whether and how many fixed frusta are equipped and the distance between frusta.
基金supported by the National Scientific and Technological support project MST (2006BAC13B02-0106)spe-cial research funds from the Public Institute of China,Institute of Geophysics (IGP),China Earthquake Ad-ministration (CEA) (DQJB06A01)The contribution No. is 10FE3004,IGP,CEA
文摘The purpose of this paper is to adopt the uniform confidence method in both water pipeline design and oil-gas pipeline design.Based on the importance of pipeline and consequence of its failure,oil and gas pipeline can be classified into three pipe classes,with exceeding probabilities over 50 years of 2%,5% and 10%,respectively.Performance-based design requires more information about ground motion,which should be obtained by evaluating seismic safety for pipeline engineering site.Different from a city's water pipeline network,the long-distance oil and gas pipeline system is a spatially linearly distributed system.For the uniform confidence of seismic safety,a long-distance oil and pipeline formed with pump stations and different-class pipe segments should be considered as a whole system when analyzing seismic risk.Considering the uncertainty of earthquake magnitude,the design-basis fault displacements corresponding to the different pipeline classes are proposed to improve deterministic seismic hazard analysis(DSHA).A new empirical relationship between the maximum fault displacement and the surface-wave magnitude is obtained with the supplemented earthquake data in East Asia.The estimation of fault displacement for a refined oil pipeline in Wenchuan MS8.0 earthquake is introduced as an example in this paper.
文摘According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.
文摘For oil and gas pipeline monitoring applications, this paper proposed a dual-parameter fusion distributed fiber optic sensor system that enables distributed temperature and distributed vibration measurements in a single fiber. Through the fiber-scattering spectrum time domain detection combined with coded pulse sequence and Raman scattering spectrum is obtained, which realizes high-resolution temperature measurement and wide-band vibrational wave measurement. The experimental results show that, on 10 km optical fiber measurement, temperature resolution up to 0.1?C and vibration response frequency range 20 Hz - 5 kHz. This sensing system achieves temperature and vibration dual-parameter measurements with fiber optics, greatly simplifying the system and facilitating installation and it can be widely used in oil and gas pipeline monitoring.
文摘The aim of this paper is to present the design and specifications of an integrated Delay Analysis Framework(DAF),which could be used to quantify the delay caused by the Risk Factors(RFs)in Oil and Gas Pipelines(OGPs)projects in a simple and systematic way.The main inputs of the DAF are(i)the potential list of RFs in the projects and their impact levels on the projects and the estimated maximum and minimum duration of each task.Monte Carlo Simulation integrated within@Risk simulator was the key process algorithm that used to quantify the impact of delay caused by the associated RFs.The key output of the DAF is the amount of potential delay caused by RFs in the OGP project.The functionalities of the developed DAF were evaluated using a case study of newly developed OGP project,in the south of Iraq.It is found that the case study project might have delayed by 45 days if neglected the consideration of the RFs associated with the project at the construction stage.The paper concludes that identifying the associated RFs and analysing the potential delay in advance will help in reducing the construction delay and improving the effectiveness of the project delivery by taking suitable risk mitigation measures.
文摘In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies.
文摘A mathematical model for optlmization design of the hot waxy crude oil transmission IZipelineis studied. The dimension-reducing method is selected to solve problems raised from multivariable,restricted and non-linear planning. And the optimization design model is applied to the practical design ofHejian Shijiazhuang oil transmission pipeline. outstanding economic and social benefits have beengained.
基金financial support by China Petroleum Science&Technology Innovation Fund(2017D-50070606):Reliability research of large diameter and high steel natural gas pipeline under fault action。
文摘There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first established the finite element model of the strain of buried pipeline crossing a fault which effected by the size and shape of the trench.And it obtained new soil spring stiffness which considered different buried depth,bottom width of trench,trench slope and elastic modulus of soil.The mechanical analysis model of pipeline is established,and the limit state equation of pipeline is fitted.The reliability and sensitivity of the natural gas pipeline under fault action are analysed by a Monte Carlo method,and the error and accuracy are verified.When the pipeline is under tension,the sensitivity from large to small is buried depth,sand friction angle,pipe diameter,pipeline displacement,trench bottom width,trench depth,clay cohesion,trench slope and clay friction angle;when the pipeline is under pressure,the trench depth and clay cohesion have great influence.The findings of this study provide a reference for pipeline design and safety evaluation under fault action.
基金The 2019 Ministry of Education industry-university cooperation collaborative education project“Research on the Construction of Economics and Management Professional Data Analysis Laboratory”(Project number:201902077020)。
文摘Oil and gas pipeline transportation,as a relatively safe way of oil and gas transportation,undertakes most of the transportation tasks of crude oil and natural gas.Oil and gas pipeline accidents affect a wide range of consequences.Therefore,the oil and gas pipeline leakage detection is paid more and more attention.In this paper,ultra-low power methane gas sensor is selected to collect methane gas concentration in the air,and wireless network technology is used to build a wireless network sensor system with 4G function.Through the sensor distribution along the pipeline,it can intuitively and accurately judge whether there is a micro-leakage in the pipeline,and understand the diffusion situation after the leakage.The sensor system has high reliability and stability,and has high value of popularization and application.
文摘With the rapid development of the offshore oil industries, submarine oil / gas pipelines have been widely used. Under the complicated submarine environmental conditions, the dynamic characteristics of pipelines show some new features due to the existence of both internal and external flows. The paper is intended to investigate the vortex-induced vibration of the suspended pipeline span exposed to submarine steady flow. Especially, the effects of the flow inside the pipeline are taken into account. Its influences on the amplitude of pipeline response, and then on the fatigue life, are given in terms of the velocity of the internal flow.
文摘s: Regarding the influencing factors in an optimal selection of pipeline design alternative as fuzzy variables with different weights, a fuzzy comprehensive assessment was applied to an optimal selection of the design alternative. Giving the Lanzhou-Chengdu pipeline as an example to explain the process, the result shows that this method is acceptable.
基金funded by the National Natural Science Foundation of China(42076217,41976205)Shandong Provincial Taishan Scholars Special Expert Project (ts201712079)+1 种基金Marine Geological Survey Program (DD20190231)Shandong Natural Science Foundation(ZR2017BD024)。
文摘Blockage in water-dominated flow pipelines due to hydrate reformation has been suggested as a potential safety issue during the hydrate production.In this work,flow velocity-dependent hydrate formation features are investigated in a fluid circulation system with a total length of 39 m.A 9-m section pipe is transparent consisted of two complete rectangular loops.By means of pressurization with gas-saturated water,the system can gradually reach the equilibrium conditions.The result shows that the hydrates are delayed to appear as floccules or thin films covering the methane bubbles.When the circulation velocity is below 750 rpm,hydrate is finally deposited as a“hydrate bed”at upmost of inner wall,narrowing the flow channel of the pipeline.Nevertheless,no plugging is observed during all the experimental runs.The five stages of hydrate deposition are proposed based on the experimental results.It is also revealed that a higher driving pressure is needed at a lower flow rate.The driving force of hydrate formation from gas and water obtained by melting hydrate is higher than that from fresh water with no previous hydrate history.The authors hope that this work will be beneficial for the flow assurance of the following oceanic field hydrate recovery trials.
文摘A new quantitative risk assessment method for hot work is proposed based on the analytic hierarchy process(AHP)and fuzzy comprehensive evaluation(FCE).It can help pipeline companies realize the risk management of hot work and further ensure the safe operation of oil and gas pipelines.Taking one natural gas pipeline in China as an example,this paper evaluates the risk of a single hot work in the spring of one natural gas pipeline in a high consequence region.First of all,the risk factors are determined with reference to the job safety analysis(JSA),and then experts were invited to fill out a questionnaire to collect their opinions.According to the results of the questionnaire,AHP is used to calculate the weight coefficients of the evaluation indicators,and FCE is used to evaluate the risk level of hot work.After calculation,the comprehensive risk score of hot work is 40.888.It belongs to a"general risk".This method can not only quantitatively evaluate the risk levels of hot work,but also reasonably sort the importance of various risk factors.It is helpful for the effective management of hot work and provides suggestions for implementing control measures.