期刊文献+
共找到2,042篇文章
< 1 2 103 >
每页显示 20 50 100
Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures 被引量:1
1
作者 Hammad Saulat Jianhua Yang +3 位作者 Tao Yan Waseem Raza Wensen Song Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期242-252,共11页
Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of ... Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation. 展开更多
关键词 Corrosion Dodecyltrimethoxysilane Hexadecyltrimethoxysilane Membranes oil/water separation ZEOLITE
下载PDF
Superhydrophobic melamine sponge prepared by radiation-induced grafting technology for efficient oil-water separation
2
作者 Ying Sun Wen-Rui Wang +7 位作者 Dan-Yi Li Si-Yi Xu Lin Lin Man-Li Lu Kai Fan Chen-Yang Xing Lin-Fan Li Ji-Hao Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期103-114,共12页
This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil... This paper presents a superhydrophobic melamine(ME)sponge(ME-g-PLMA)prepared via high-energy radiation-induced in situ covalent grafting of long-alkyl-chain dodecyl methacrylate(LMA)onto an ME sponge for efficient oil–water separation.The obtained ME-g-PLMA sponge had an excellent pore structure with superhydrophobic(water contact angle of 154°)and superoleophilic properties.It can absorb various types of oils up to 66–168 times its mass.The ME-g-PLMA sponge can continuously separate oil slicks in water by connecting a pump or separating oil underwater with a gravity-driven device.In addition,it maintained its highly hydrophobic properties even after long-term immersion in different corrosive solutions and repeated oil adsorption.The modified ME-g-PLMA sponge exhibited excellent separation properties and potential for oil spill cleanup. 展开更多
关键词 Radiation-induced graft polymerization oilwater separation SPONGE SUPERHYDROPHOBIC
下载PDF
The superhydrophobic sponge decorated with Ni-Co double layered oxides with thiol modification for continuous oil/water separation
3
作者 Xiaodong Yang Na Yang +4 位作者 Ziqiang Gong Feifei Peng Bin Jiang Yongli Sun Luhong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期296-305,共10页
In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modific... In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water. 展开更多
关键词 Superhydrophobic sponge Ni-Co double layered oxides Thiol modification oil absorption oil/water separation
下载PDF
Quantitatively probing interactions between membrane with adaptable wettability and oil phase in oil/water separation
4
作者 Zhong-Zheng Xu Ming-Wei Zhao +6 位作者 Yi-Ning Wu Jia-Wei Liu Ning Sun Zi-Zhao Wang Yi-Ming Zhang Lin Li Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2564-2574,共11页
The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative ana... The membrane method based on adaptive wettability shows great advantages in oil-water separation.At present,researches focus on the excellent application performance of the membrane material,while the quantitative analysis of interactions in oil-water separation is rarely recognized.Herein,we constructed an adaptable wettability membrane with multiple polymer networks by polydopamine(PDA)and mussel-inspired amphiphilic polymer.Based on the Owens three-probe liquid method,the surface energy of the modified membrane was verified to meet the adaptive wettability conditions,with surface energies(γ-8)of 147.6 mJ m^(−2)(superhydrophilic/underwater superoleophobic)and 49.87 mJ m^(−2)(superhydrophobic/superoleophobic),respectively.The adhesion or repulsion of the membrane to the oil phase under different conditions during the separation process was quantified by the chemical probe AFM technique.In addition,the oil-water selective separation mechanism was further analyzed in a simplified membrane microchannel model.The results show that the different wetting produces capillary additional pressure in opposite directions,resulting in different energies to be overcome when the oil or water passes through the microchannels,thus achieving selective separation. 展开更多
关键词 Adaptable wettability Selective oil/water separation Interface interaction Probe AFM technique
下载PDF
Efficient oil-water separation by novel biodegradable all cellulose composite filter paper
5
作者 Chizhou Wang Shaodi Wu +4 位作者 Ning Zhang Zhaoli Jiang Xianglin Hou Long Huang Tiansheng Deng 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1673-1682,共10页
Industrial production and domestic discharge produce a large amount of oily wastewater, which seriously affects the stability of the ecological environment. Membrane separation technology provides another path to trea... Industrial production and domestic discharge produce a large amount of oily wastewater, which seriously affects the stability of the ecological environment. Membrane separation technology provides another path to treating oily wastewater. And appropriate surface modification of the membrane helps to achieve high efficiency of treating oily wastewater. With green, economy and stability been more concerned.The focal research reports a completely biodegradable all cellulose composite filter paper(ACCFP) composed of Ⅰ-cellulose macrofibers and Ⅱ-cellulose matrix. It is a simple one-step impregnation method to adjust the surface microstructure of the pristine filter paper(PFP), and it does not involve with chemical reaction. The pre-wetted ACCFP consist of Ⅱ-cellulose hydrogel and Ⅰ-cellulose reinforcement in the process of oil-water separation. This layer of hydrogel is the fundamental to underwater superoleophobicity, which determines their eligibility for applications of efficient oil-water mixture or oil-in-water(oil/water) emulsion separation. The separation efficiency of oil-water mixture and oil/water emulsion exceed 95% and 99.9%, respectively. In addition, excellent mechanical properties of ACCFP in dry and wet conditions ensure its stability in service and prolong service life in applications. The focal study provides a new method for high-performance oil-water separation and it is more in line with sustainable chemistry. 展开更多
关键词 All cellulose composite filter paper Pristine filter paper oil in water separation Underwater superoleophobic property
下载PDF
SELECTIVE SEPARATION OF WATER-ETHANOL MIXTURES THROUGH COPOLYMERIC MEMBRANES: Ⅰ. ACRYLIC ACID AND ACRYLONITRILE COPOLYMER AND ITS IONIZED MEMBRANES
6
作者 张富尧 张一烽 +1 位作者 赵卓敏 沈之荃 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1993年第3期242-248,共7页
The copolymer of acrylic acid and acrylonitrile has been synthesized and pervaporation properties of the copolymeric membranes have been investigated. In order to elucidate the influence of membrane-permeate interacti... The copolymer of acrylic acid and acrylonitrile has been synthesized and pervaporation properties of the copolymeric membranes have been investigated. In order to elucidate the influence of membrane-permeate interaction on the pervaporation of water-ethanol mixtures and to prepare much improved membranes, the membranes have been treated with alkali metal, alkali earth metal and transition metal salt aqueous solutions. The treated membranes (ionized membranes) exhibited higher separation factors than the untreated membranes. The separation factors of various alkali metal cation membranes decreased in the following order : Li^+>Na^+>K^+, and the permeation rates showed an opposite tendency. The dependence of pervaporation behavior on the copolymer composition ,feed concentration and operating temperature have been studied with both ionized and non-ionized membranes. The apparent activation energies of water and ethanol permeation were calculated. 展开更多
关键词 PERVAPORATION separation behavior water/ethanol mixture Acrylonitrileacrylic acid copolymer.
下载PDF
PERVAPORATION SEPARATION OF WATER-ACETIC ACID MIXTURES THROUGH AN-co-AA MEMBRANES TREATED WITH RARE EARTH METAL IONS
7
作者 沈之荃 张富尧 张一烽 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1995年第2期185-188,共4页
Pervaporation separation of water-acetic acid mixtures through Poly(AN-co-AA) membranes and rare earth metal ions treated Poly(AN-co-AA)membranes was investigated for the first time. The results showed that the treatm... Pervaporation separation of water-acetic acid mixtures through Poly(AN-co-AA) membranes and rare earth metal ions treated Poly(AN-co-AA)membranes was investigated for the first time. The results showed that the treatment with rare earth metal ions could greatly improve the characteristics of the separation of water-acetic acid mixtures. 展开更多
关键词 PERVAPORATION separation water-ACETIC mixture POLY (AN-CO-AA) MEMBRANES RARE EARTH IONS
下载PDF
A Proton Nuclear Magnetic Resonance (<sup>1</sup>H NMR) Investigation of NaCl-Induced Phase Separation of Acetonitrile-Water Mixtures
8
作者 Ruizhi Wen Muqian Yu +3 位作者 Le Jiang Lili Feng Wenjie Deng Bo Chen 《American Journal of Analytical Chemistry》 2017年第10期657-667,共11页
The microscopic properties of NaCl-induced phase separation of acetonitrile (ACN)-water mixtures have been studied by proton nuclear magnetic resonance (1H NMR). Acetonitrile-rich phase increases with increasing NaCl ... The microscopic properties of NaCl-induced phase separation of acetonitrile (ACN)-water mixtures have been studied by proton nuclear magnetic resonance (1H NMR). Acetonitrile-rich phase increases with increasing NaCl concentration (cNaCl) at xACN ≈ 0.25. 1H chemical shift of water for acetonitrile-rich phase rapidly decreases with decreasing NaCl mole concentration and that for water-rich phase quickly increases with increasing cNaCl. However, 1H chemical shift of acetonitrile has nothing to do with the molar concentration of NaCl, and it keeps relatively stable for all solutions (±0.002). These results reveal that Na+ and Cl- are rapidly hydrated by water, not by acetonitrile. The change of 1H chemical shift of water has shown that the number of hydrogen bond increases or hydrogen bond strengths with increasing NaCl molarity in mixtures. But hydrogen bond is broken or weaken with the temperature rising. 1H chemical shifts of pure water and the water in acetonitrile-rich phase have been investigated at 293 K, 298 K and 303 K. The hydration number of Na+ (6.05) in water-rich phase is determined by an empirical equation involving 1H chemical shift, temperature and NaCl molarity, which is in good agreement with the literatures. 展开更多
关键词 1H NMR NACL Phase separation Acetonitrile-water mixtureS Hydrogen BOND
下载PDF
Fouling-resistant Composite Membranes for Separation of Oil-in-water Microemulsions 被引量:8
9
作者 王枢 褚良银 陈文梅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期37-45,共9页
Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., ... Fouling-resistant ceramic-supported polymer composite membranes were developed for removal of oil-in-water (O/W) mieroemulsions. The composite membranes were featured with an asymmetric three-layer structure, i.e., a porous ceramic membrane substrate, a polyvinylidene fluoride (PVDF) ultrafiltration sub-layer, and a polyamide/polyvinyl alcohol (PVA) composite thin top-layer. The PVDF polymer was east onto the tubular porous ceramic membranes with an immersion precipitation method, and the polyamide/PVA composite thin top-layer was fabricated with an inteffaeial polymerization method. The effects of the sub-layer composition and the recipe in the inteffaeial polymerization for fabricating the top-layer on the structure and performance of composite membranes were systematically investigated. The prepared composite membranes showed a good performance for treating the O/W microemulsions with a mean diameter of about 2.41μm. At the operating pressure of 0.4MPa, the hydraulic permeability remained steadily about 190L·m^-2·h^-1, the oil concentration in the permeate was less than 1.6mg·L^-1, and the oil rejection coefficient was always higher than 98.5% throughout the operation from the beginning. 展开更多
关键词 composite membranes fouling-resistant oil/water separation MICROEMULSION interracial polymerization
下载PDF
Super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane sponge applied for oil/water separation 被引量:9
10
作者 Huiwen Meng Tao Yan +1 位作者 Jingang Yu Feipeng Jiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第5期957-963,共7页
Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functio... Nowadays, oil spills have led to a serious environmental crisis of the world. To deal with this problem, inspired from super-hydrophobic lotus leaf, this study fabricated super-hydrophobic and super-lipophilic functionalized graphene oxide/polyurethane (FGP) sponge by a simple and inexpensive dip coating method. The resulting FGP sponge was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and water contact angle. The results expressed that FGP sponge exhibited a similar surface structure to that of a lotus leaf, and possessed the super-hydrophobic characteristic with the water contact angle (WAC) of 152°± 1 °. The absorption capacity and reusability were also investigated. It can be seen that, the FGP sponge can remove a wide range of oils and organic solvents from water with good absorption capacities (up to 35 times of its own mass). Significantly, after 10 cycles the absorption capacity of the oils and organic solvents was higher than 90°; for the reused FGP sponge, demonstrating the good reusability of the FGP sponge. Therefore, this study probably provided a simole way to remove the pollutions ofoil spills and toxic organism from water. 展开更多
关键词 Graphene oxide n-Dodecyltrimethoxysilane Polyurethane sponge SUPER-HYDROPHOBICITY oil/water separation
下载PDF
Coalescence separation of oil water emulsion on amphiphobic fluorocarbon polymer and silica nanoparticles coated fiber-bed coalescer 被引量:4
11
作者 Qian Zhang Lei Li +2 位作者 Lixia Cao Yanxiang Li Wangliang Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期29-37,共9页
Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively se... Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively separated oil–water emulsion as it was hydrophobic underwater.But its separation efficiencies(SEs)first increased to 98.9%,then dropped to 97.6%in 10 min because of oil-fouling.To tackle this problem,FM deposited with 0%–10%silica nanoparticle(NPsFMs),then coated by fluorocarbon polymer(X-[CH_(2)CH_(2)O]nCH_(2)CH_(2)O-Y-NH-COOCH_(2)C4F9)(FCNPs FMs),was used to enhance its roughness and regulate its initial wettability to improve the anti-fouling property.FCFM and FCNPs FMs were hydrophobic and oleophobic in air and oleophobic underwater.Their water contact angles,oil contact angles and oil contact angles were 115.3°–121.1°,128.8°–136.5°,and 131.6°–136.7°,respectively,meeting the requirement of 90°–140°for coalescence separation.FCNPs FM-5 had the best separation performance with a constant value of 99.8%in 10 min,while that of FCNPs FM-10 slightly decreased to 99.5%.Theoretical released droplet(TRD)diameter,calculated by the square root of the product of pore radius and fiber diameter,was used for the evaluation of coalescence performance.Analyzed by two ideal models,TRD diameter and fiber diameter showed a parabola type relationship,proving that the separation efficiency was a collaborative work of wettability,pore size and fiber diameter.Also,it explained the SEs reduction from FCNPs FM-5 to FCNPs FM-10 was revelent to the three parameters.Moreover,FCNPsFMs effectively separated emulsions stabilized by cationic surfactant CTAB(SEs:97.3%–98.4%)and anionic surfactant SDBS(SEs:91.3%–93.4%).But they had an adverse effect on nonionic surfactant Tween-80 emulsion separation(SEs:94.0%–71.76%).Emulsions made by diverse oils can be effectively separated:octane(SEs:99.4%–100%),rapeseed oil(SEs:97.3%–98.8%),and diesel(SEs:95.2%–97.0%).These findings provide new insights for designing novel materials for oil–water separation by coalescence mechanism. 展开更多
关键词 oilwater separation Fluorocarbon polymer Amphiphobic COALESCENCE
下载PDF
Superhydrophobic Micro/Nanostructured Copper Mesh with Self-Cleaning Property for E ective Oil/Water Separation 被引量:1
12
作者 Tai-heng Zhang Tao Yan +2 位作者 Guo-qing Zhao Wenjihao Hu Fei-peng Jiao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第5期635-642,共8页
In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prom... In this work, a simple method was carried out to successfully fabricate superoleophilic and superhydrophobic N-dodecyltrimethoxysilane@tungsten trioxide coated copper mesh. The as-fabricated copper mesh displayed prominent superoleophilicity and superhydrophobicity with a huge water contact angle about 154.39° and oil contact angle near 0° Moreover, the coated copper mesh showed high separation efficiency approximately 99.3%, and huge water flux about 9962.3 L·h^-1·m-2, which could be used to separate various organic solvents/ water mixtures. Furthermore, the coated copper mesh showed favorable stability that the separation efficiency remained above 90% after 10 separation cycles. Benefiting from the excellent photocatalytic degradation ability of tungsten trioxide, the coated copper mesh possessed the self-cleaning capacity. Therefore, the mesh contaminated with lubricating oil could regain superhydrophobic property, and this property of self-cleaning permitted that the fabricated copper mesh could be repeatedly used for oil and water separation. 展开更多
关键词 SUPERHYDROPHOBICITY MICRO/NANOSTRUCTURE TUNGSTEN TRIOXIDE SELF-CLEANING oil/water separation
下载PDF
Separation of Oil Phase from Dilute Oil/Water Emulsion in Confined Space Apparatus
13
作者 王硕 秦炜 戴猷元 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第2期239-245,共7页
A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space b... A miniature process for separating the oil phase from dilute oil/water emulsion is developed.This process applies a confined space apparatus,which is a thin flow channel made of two parallel plastic plates.The space between the two plates is rather narrow to improve the collisions between oil droplets and the plate surface.Oil droplets have an affinity for the plate surface and thus are captured,and then coalesce onto the surface.The droplet size distribution of the residual emulsion resulted from the separation process is remarkably changed.The oil layer on the plate weakens the further separation of oil droplets from the emulsion.Three types of plate materials,polypropylene(PP),polytetrafluoroethylene(PTFE) and nylon 66,were used.It is found that PP is the best in terms of the oil separation efficiency and nylon 66 is the poorest.The interaction between droplets in the emulsion and plate surface is indicated by the spreading coefficient of oil droplet on the plate in aqueous environment,and the influences of formed oil layer and plate material on the separation efficiency are discussed. 展开更多
关键词 oil/water emulsion confined space apparatus oil separation efficiency spreading coefficient
下载PDF
Highly Durable Ag-CuO Heterostructure-Decorated Mesh for Efficient Oil/Water Separation and In Situ Photocatalytic Dye Degradation
14
作者 Jiakai Li Changpeng Lv +2 位作者 Xuehua Liu Zhengbo Jiao Na Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第4期611-619,共9页
It is of great necessity yet still a challenge to develop superwetting functional interfacial materials for simultaneously separating insoluble oil and degrading soluble dye pollutants in practical wastewater.In this ... It is of great necessity yet still a challenge to develop superwetting functional interfacial materials for simultaneously separating insoluble oil and degrading soluble dye pollutants in practical wastewater.In this work,a Ag-CuO heterostructure-decorated mesh was fabricated via facile alkali etchingcalcination and photoreduction approaches.The as-synthesized mesh with superhydrophilicity and underwater superoleophobicity displayed high separation efficiency(>99.998%)for diverse oil/water mixtures.Besides,it demonstrated more superior photocatalytic performance in dye degradation than those of bare CuO nanostructure-coated materials,which is primarily attributed to the intensive visible light harvesting and efficient electron-holes separation occurred on noble metal-semiconductor heterostructures.Furthermore,on account of the tenacity of Cu substrate as well as enhanced structural stability,this binary composite-decorated mesh exhibited highly reliable durability and robustness after 10 cycles of photocatalytic degradation tests,and even being ultrasonic worn for 30 min.More importantly,our developed mesh was capable of in situ catalytic degrading water-soluble organic dyes during oil/water separation under visible light irradiation.Therefore,such a dexterous and feasible strategy may afford a new route to construct bifunctional and predurable materials for actual sewage purification. 展开更多
关键词 Ag-CuO heterostructures highly durable in situ bifunctional oil/water separation photocatalytic dye degradation
下载PDF
Oil-water Separation Properties of Produced Fluid by Polymer Flooding
15
作者 Li Jiexun Yue Jihong and Niu Weidong(The Third Oil-production Plant of Daqing Petroleum Administration) 《China Oil & Gas》 CAS 1996年第4期218-219,共2页
Oil-waterSeparationPropertiesofProducedFluidbyPolymerFloodingLiJiexun;YueJihongandNiuWeidong(TheThirdOil-pro... Oil-waterSeparationPropertiesofProducedFluidbyPolymerFloodingLiJiexun;YueJihongandNiuWeidong(TheThirdOil-productionPlantofDaq... 展开更多
关键词 DEMULSIFIER PRODUCED water oil water separation
下载PDF
Cyclonic separation process intensification oil removal based on microbubble flotation 被引量:8
16
作者 Liu Jiongtian Xu Hongxiang Li Xiaobing 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期415-422,共8页
The cyclonic-static microbubble flotation column has dual effects including the cyclonic separation and floatation separation with the characteristics of the small lower limit of the effective separation size, short s... The cyclonic-static microbubble flotation column has dual effects including the cyclonic separation and floatation separation with the characteristics of the small lower limit of the effective separation size, short separation time, large handling capacity, and low operation cost. It shows significant advantages in the oily wastewater treatment field, especially the polymer flooding oily wastewater treatment aspect. In this paper, the cyclonic separation function mechanism of the cyclonic-static microbubble flotation column was studied, the impact of the parameters including the feeding rate, aeration rate, circulating pressure, and underflow split ratio on the cyclonic separation efficiency was investigated, and the cyclonic separation efficiency model was established as well. In addition, by applying the Doppler Laser Velocimeter (LDV) and Fluent simulation software, the test and simulation to the single-phase flow velocity field of the cyclonic separation section of the cyclonic-static microbubble flotation column were carried out, and the velocity distribution rule of the cyclonic separation section was analyzed under the singlephase flow conditions. 展开更多
关键词 Cyclonic-static microbubble flotation column Microbubble flotation Cyclonic separation oilwater separation
下载PDF
Robust superhydrophobic polyurethane sponge functionalized with perfluorinated graphene oxide for efficient immiscible oil/water mixture, stable emulsion separation and crude oil dehydration 被引量:6
17
作者 CAO Ning GUO JingYu +8 位作者 BOUKHERROUB Rabah SHAO QingGuo ZANG XiaoBei LI Jin LIN XueQiang JU Hong LIU EnYang ZHOU ChaoFan LI HuiPing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第9期1585-1595,共11页
In recent years, graphene oxide(GO), prepared by the modified Hummers’ method, and its derivatives have become a focus of research owing to their outstanding physical and chemical properties and low cost. Drawing ins... In recent years, graphene oxide(GO), prepared by the modified Hummers’ method, and its derivatives have become a focus of research owing to their outstanding physical and chemical properties and low cost. Drawing inspiration from the mussel protein,a facile and environmentally-friendly method was employed to fabricate superhydrophobic/superoleophilic reduced graphene oxide(rGO) derivative. The preparation comprises two steps: coating GO nanosheets with polydopamine(PDA) and subsequent reaction with 1H,1H,2H,2H-perfluorodecanethiol. Due to the excellent adhesive ability of PDA, the resulting f PDA modified rGO nanosheets(rGO-f PDA) were firmly immobilized onto polyurethane(PU) sponge skeleton by a simple drop-coating method. The as-prepared rGO-f PDA functionalized sponge exhibited superhydrophobic behavior with a water contact angle of 162°±2°, high organic adsorption capacity, recyclability and stable oil/water separation behavior under different acidic/alkaline conditions. Due to its facile fabrication technique and outstanding properties, the superhydrophobic-superoleophilic PU-rGOf PDA sponge holds great promise as an oil adsorbent for cleaning up large-scale pollution of oil and organic solvents, and dehydrating crude oil. 展开更多
关键词 graphene oxide SUPERHYDROPHOBIC sponge adsorption oil/water separation EMULSION
原文传递
Adsorption of oil from waste water by coal:characteristics and mechanism 被引量:4
18
作者 LI Xiaobing,ZHANG Chunjuan,LIU Jiongtian School of Chemical Engineering and Technology,China University of Mining & Technology,Xuzhou 221116,China 《Mining Science and Technology》 EI CAS 2010年第5期778-781,共4页
The work described here was focused on exploring the potential application of coal to purification of oily waste water.Coal was added to oily waste water as an adsorbent and then removed through a flotation process.Th... The work described here was focused on exploring the potential application of coal to purification of oily waste water.Coal was added to oily waste water as an adsorbent and then removed through a flotation process.This allowed economical and highly efficient separation of oil from the waste water.The absorption time,coal type,coal particle size distribution,pH value and oil concentration were investigated.The results indicate that oil absorption by a coal increases for a period of 1.5 h and then gradually tends toward an equilibrium value.It appears that the absorption capacity of anthracite is more than that of lean coal or lignite,given the same coal particle size distribution.The absorption capacity of a coarse coal fraction is less than that of finer coal,given the same of coal type.The absorption capacity of anthracite decreases slightly as the pH increases from 4 to 9.The adsorption of oil on anthracite follows the Freundlich isothermal adsorption law:given initial oil concentrations of 160.5 or 1023.6 mg/L the absorption capacity was 23.8 or 840.0 mg/g.The absorption mechanism consists of two kinds of absorption,a physical process assisted by a chemical one. 展开更多
关键词 oily wastewater waste water separation COAL oil ADSORPTION MECHANISM
下载PDF
TiO_(2) Coated Polypropylene Membrane by Atomic Layer Deposition for Oil-Water Mixture Separation 被引量:2
19
作者 Chen Li Lipei Ren +2 位作者 Chunhua Zhang Weilin Xu Xin Liu 《Advanced Fiber Materials》 CAS 2021年第2期138-146,共9页
Polypropylene(PP)membrane has been widely used in water purification and other fields owing to special pore structure,excellent mechanical properties and resistance to acids,alkalis and organic solvents.However,it is ... Polypropylene(PP)membrane has been widely used in water purification and other fields owing to special pore structure,excellent mechanical properties and resistance to acids,alkalis and organic solvents.However,it is difficult for PP to introduce the hydrophilic chemical compositions for oil-water separation.Herein,superhydrophilic and underwater superoleophobic PP membranes were prepared by ALD for efficient gravity-driven oil-water separation.Owing to synergistic effect,oil contact angle of TiO_(2) coated PP membrane under water can reach above 150°.Hence,TiO_(2) coated PP membrane has great oil-repelling performance.Because of the superwetting property,TiO_(2) coated PP membrane can easily separate oil-water mixture and have high separation efficiency(more than 95%).The outstanding recyclability and mechanical stability of TiO_(2) coated PP membrane suggest the promising potential application in practical oil-water separation. 展开更多
关键词 oil/water separation Polypropylene membrane Atomic layer deposition Underwater superoleophobicity TiO_(2)
原文传递
Development and prospect of separated zone oil production technology 被引量:2
20
作者 LIU He ZHENG Lichen +4 位作者 YANG Qinghai YU Jiaqing YUE Qingfeng JIA Deli WANG Quanbin 《Petroleum Exploration and Development》 2020年第5期1103-1116,共14页
This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adap... This article outlines the development of separated zone oil production in foreign countries,and details its development in China.According to the development process,production needs,technical characteristics and adaptability of oilfields in China,the development of separate zone oil production technology is divided into four stages:flowing well zonal oil production,mechanical recovery and water blocking,hydraulically adjustable zonal oil production,and intelligent zonal production.The principles,construction processes,adaptability,advantages and disadvantages of the technology are introduced in detail.Based on the actual production situation of the oilfields in China at present,three development directions of the technology are proposed.First,the real-time monitoring and adjustment level of separated zone oil production needs to be improved by developing downhole sensor technology and two-way communication technology between ground and downhole and enhancing full life cycle service capability and adaptability to horizontal wells.Second,an integrated platform of zonal oil production and management should be built using a digital artificial lifting system.Third,integration of injection and production should be implemented through large-scale application of zonal oil production and zonal water injection to improve matching and adjustment level between the injection and production parameters,thus making the development adjustment from"lag control"to"real-time optimization"and improving the development effect. 展开更多
关键词 separated zone oil production flowing well zonal oil production mechanical recovery and water plugging hydraulically adjustable zonal oil production intelligent zonal oil production PROSPECT
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部