期刊文献+
共找到893篇文章
< 1 2 45 >
每页显示 20 50 100
Oil–water two-phase flow pattern analysis with ERT based measurement and multivariate maximum Lyapunov exponent 被引量:8
1
作者 谭超 王娜娜 董峰 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期240-248,共9页
Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus th... Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis. 展开更多
关键词 最大LYAPUNOV指数 多变量时间序列 流型分析 测量数据 ERT 两相流 水油 多元时间序列
下载PDF
An Experimental Study on the Flow Characteristics of OilWater Two-Phase Flow in Horizontal Straight Pipes 被引量:7
2
作者 刘文红 郭烈锦 +1 位作者 吴铁军 张西民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期491-496,共6页
The flow patterns and their transitions of oil-water two-phase flow in horizontal pipes were studied. The experiments were conducted in two kinds of horizontal tubes, made of plexiglas pipe and stainless steel pipe wi... The flow patterns and their transitions of oil-water two-phase flow in horizontal pipes were studied. The experiments were conducted in two kinds of horizontal tubes, made of plexiglas pipe and stainless steel pipe with 40mm ID respectively. No. 46 mechanical oil and tap water were used as working fluids. The superficial velocity ranges of oil and water were: 0.04-1.2m·s^-1 and 0.04-2.2 m·s^-1, respectively. The flow patterns were identified by visualization and by transient fluctuation signals of differential pressure drop. The flow patterns were defined according to the relative distribution ofoil and water phases in the pipes. Flow pattern maps were obtained for both pipelines. In addition, semi-theoretical transition criteria for the flow patterns were proposed, and the proposed transitional criteria are in reasonable agreement with available data in liquid-liquid systems. 展开更多
关键词 水平长直管 油水两相流 流动特性 实验研究 转换标准
下载PDF
An analytical model for water-oil two-phase flow in inorganic nanopores in shale oil reservoirs 被引量:2
3
作者 Ran Li Zhangxin Chen +2 位作者 Keliu Wu Xing Hao Jinze Xu 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1776-1787,共12页
The existence of water phase occupies oil flow area and impacts the confined oil flow behavior at the solid substrate in inorganic nanopores of shale oil reservoirs,resulting in a completely different flow pattern whe... The existence of water phase occupies oil flow area and impacts the confined oil flow behavior at the solid substrate in inorganic nanopores of shale oil reservoirs,resulting in a completely different flow pattern when compared with the single oil phase flow.This study proposes an analytical model to describe the water-oil two-phase flow.In this model,water slippage at the solid substrate is considered while oil slip is introduced to calculate the oil movement at the solid-oil boundary in dry conditions.It is proven that the oil flow profiles of both the two-phase model and single-phase model show parabolic shapes,but the oil flow capacity drops when water takes up the flow space and the impact of water is more significant when the pore dimension is smaller than 30 nm.Also,the oil flow velocity at a pore center is found to drop linearly given a larger water saturation in wet conditions.The effects of surface wettability and oil properties on water-oil flow are also discussed.Compared with the existing singlephase models,this model describes oil flow pattern in the wet condition with the incorporation of the influence of nanopore properties,which better predicts the oil transport in actual reservoir conditions.Water-oil relative permeability curves are also obtained to improve oil yield. 展开更多
关键词 Shale oil water films two-phase flow NANOPORE
下载PDF
Numerical Simulation of a Two-Phase Flow with Low Permeability anda Start-Up Pressure Gradient
4
作者 Xuanyu Dong Jingyao Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期175-185,共11页
A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related n... A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related numerical solutions are obtained using a finite difference method.The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example.Then,the differences in the cumulative oil and water production are investigated for different starting water saturations.It is shown that when the initial water saturation grows,the water content of the block continues to rise and the cumulative oil production gradually decreases. 展开更多
关键词 Low-permeability reservoirs two-phase flow water cut start-up pressure gradient non-darcy flow
下载PDF
Quantitative research of the liquid film characteristics in upward vertical gas, oil and water flows
5
作者 Dayang Wang Ningde Jin +1 位作者 Lusheng Zhai Yingyu Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期67-79,共13页
The study of liquid film characteristics in multiphase flow is a very important research topic, however,the characteristics of the liquid film around Taylor bubble structure in gas, oil and water three-phase flow are ... The study of liquid film characteristics in multiphase flow is a very important research topic, however,the characteristics of the liquid film around Taylor bubble structure in gas, oil and water three-phase flow are not clear. In the present study, a novel liquid film sensor is applied to measure the distributed signals of the liquid film in three-phase flow. Based on the liquid film signals, the liquid film characteristics including the structural characteristics and the nonlinear dynamics characteristics in three-phase flows are investigated for the first time. The structural characteristics including the proportion, the appearance frequency and the thickness of the liquid film are obtained and the influences of the liquid and gas superficial velocities and the oil content on them are investigated. To investigate the nonlinear dynamics characteristics of the liquid film with the changing flow conditions, the entropy analysis is introduced to successfully uncover and quantify the dynamic complexity of the liquid film behavior. 展开更多
关键词 GAS oil and water three-phase flow Liquid film characteristics Liquid film sensor Nonlinear dynamics analysis
下载PDF
Laboratory investigation into the oil diffusion from submarine pipeline under water flow 被引量:2
6
作者 JIANG Meirong YU Jianxing +3 位作者 LI Zhigang ZHONG Wenjun WU Zhaohui YU Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第11期96-103,共8页
A physical model test has been conducted to study the oil diffusion from the submarine pipeline under water flow.The crude oil in the flume is spilled from a leakage point of the pipeline and diffused from the seabed ... A physical model test has been conducted to study the oil diffusion from the submarine pipeline under water flow.The crude oil in the flume is spilled from a leakage point of the pipeline and diffused from the seabed to the surface. By the non-contact optical measuring technology, an image acquisition and data analysis system is designed to explore the spilled mechanism and characteristic. The oil trajectory, velocity and the rising time to the surface are obtained through this system. The influence of the water flow and the spilled discharge on the behavior of the spilled oil are analyzed from both qualitative and quantitative perspectives. The sensitivity study of the characteristic physical quantities to various factors are presented afterward. The spilled oil under water is mainly distributed in the form of the scattered particles with different sizes. The rising process of the oil can be divided into three stages: full, dispersion and aggregation period. The spilled discharge is the primary factor affecting the rising time of the oil particles. In the rising process of the oil particles, the vertical velocity of the oil is mainly affected by the spilled discharge, and the transverse velocity is more dependent on the water velocity. The deviation of the transverse oil velocity is much larger than that of the rising time and the vertical oil velocity. The study can provide a theoretical reference for the prediction system of oil spill emergency. 展开更多
关键词 oil diffusion submarine pipeline model test water flow spilled discharge
下载PDF
Two-Phase Flow in Porous Electrodes of Proton Exchange Membrane Fuel Cell 被引量:2
7
作者 Daokuan Jiao Kui Jiao Qing Du 《Transactions of Tianjin University》 EI CAS 2020年第3期197-207,共11页
Water management in porous electrodes bears significance due to its strong potential in determining the performance of proton exchange membrane fuel cell.In terms of porous electrodes,internal water distribution and r... Water management in porous electrodes bears significance due to its strong potential in determining the performance of proton exchange membrane fuel cell.In terms of porous electrodes,internal water distribution and removal process have extensively attracted attention in both experimental and numerical studies.However,the structural difference among the catalyst layer(CL),microporous layer(MPL),and gas diffusion layer(GDL)leads to significant challenges in studying the two-phase flow behavior.Given the different porosities and pore scales of the CL,MPL,and GDL,the model scales in simulating each component are inconsistent.This review emphasizes the numerical simulation related to porous electrodes in the water transport process and evaluates the effectiveness and weakness of the conventional methods used during the investigation.The limitations of existing models include the following:(i)The reconstruction of geometric models is difficult to achieve when using the real characteristics of the components;(ii)the computational domain size is limited due to massive computational loads in three-dimensional(3 D)simulations;(iii)numerical associations among 3 D models are lacking because of the separate studies for each component;(iv)the effects of vapor condensation and heat transfer on the two-phase flow are disregarded;(v)compressive deformation during assembly and vibration in road conditions should be considered in two-phase flow studies given the real operating conditions.Therefore,this review is aimed at critical research gaps which need further investigation.Insightful potential research directions are also suggested for future improvements. 展开更多
关键词 PEMFC POROUS ELECTRODES two-phase flow water MANAGEMENT
下载PDF
Flow Characteristics of Crude Oil with High Water Fraction during Non-heating Gathering and Transportation 被引量:1
8
作者 LüYuling Tan Hao +2 位作者 Li Jiao Yang Donghai Xu Peiyang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第1期88-97,共10页
In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil... In order to ensure the safety of the non-heating gathering and transportation processes for high water fraction crude oil,the effect of temperature,water fraction,and flow rate on the flow characteristics of crude oil with high water fraction was studied in a flow experimental system of the X Oilfield.Four distinct flow patterns were identified by the photographic and local sampling techniques.Especially,three new flow patterns were found to occur below the pour point of crude oil,including EW/O&W stratified flow with gel deposition,EW/O&W intermittent flow with gel deposition,and water single-phase flow with gel deposition.Moreover,two characteristic temperatures,at which the change rate of pressure drop had changed obviously,were found during the change of pressure drop.The characteristic temperature of the first congestion of gel deposition in the pipeline was determined to be the safe temperature for the non-heating gathering and transportation of high water cut crude oil,while the pressure drop reached the peak at this temperature.An empirical formula for the safe temperature was established for oil-water flow with high water fraction/low fluid production rate.The results can serve as a guide for the safe operation of the non-heating gathering and transportation of crude oil in high water fraction oilfields. 展开更多
关键词 crude oil with high water fraction non-heating gathering and transportation flow pattern pressure drop safe temperature
下载PDF
Multifractal analysis of inclined oil-water countercurrent flow
9
作者 Zhu Lei Jin Ningde +1 位作者 Gao Zhongke Zong Yanbo 《Petroleum Science》 SCIE CAS CSCD 2014年第1期111-121,共11页
Characterizing countercurrent flow structures in an inclined oil-water two-phase flow from one-dimensional measurement is of great importance for model building and sensor design. Firstly, we conducted oil-water two-p... Characterizing countercurrent flow structures in an inclined oil-water two-phase flow from one-dimensional measurement is of great importance for model building and sensor design. Firstly, we conducted oil-water two-phase flow experiments in an inclined pipe to measure the conductance signals of three typical water-dominated oil-water flow patterns in inclined flow, i.e., dispersion oil-in-water pseudo-slug flow(PS), dispersion oil-in-water countercurrent flow(CT), and transitional flow(TF). In pseudo-slug flow, countercurrent flow and transitional flow, oil is completely dispersed in water. Then we used magnitude and sign decomposition analysis and multifractal analysis to reveal levels of complexity in different flow patterns. We found that the PS and CT flow patterns both exhibited high complexity and obvious multifractal dynamic behavior, but the magnitude scaling exponent and singularity of the CT flow pattern were less than those of the PS flow pattern; and the TF flow pattern exhibited low complexity and almost monofractal behavior, and its magnitude scaling was close to random behavior. Meanwhile, at short time scales, all sign series of two-phase flow patterns exhibited very similar strong positive correlation; at high time scales, the scaling analysis of sign series showed different anti-correlated behavior. Furthermore, with an increase in oil flow rate, the flow structure became regular, which could be reflected by the decrease in the width of spectrum and the difference in dimensions. The results suggested that different oil-water flow patterns exhibited different nonlinear features, and the varying levels of complexity could well characterize the fluid dynamics underlying different oil-water flow patterns. 展开更多
关键词 油水两相流 多重分形分析 逆流 流动模式 动态行为 时间尺度 传感器设计 正相关关系
下载PDF
Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
10
作者 窦富祥 金宁德 +2 位作者 樊春玲 高忠科 孙斌 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期85-96,共12页
We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of diff... We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures. 展开更多
关键词 流动结构 多尺度 平面 度量 时间序列 动力结构 波动信号
下载PDF
Attractor comparison analysis for characterizing vertical upward oil gas water three-phase flow 被引量:1
11
作者 赵俊英 金宁德 +2 位作者 高忠科 杜萌 王振亚 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期361-368,共8页
We investigate the dynamic characteristics of oil–gas–water three-phase flow in terms of chaotic attractor comparison.In particular, we extract a statistic to characterize the dynamical difference in attractor proba... We investigate the dynamic characteristics of oil–gas–water three-phase flow in terms of chaotic attractor comparison.In particular, we extract a statistic to characterize the dynamical difference in attractor probability distribution. We first take time series from Logistic chaotic system with different parameters as examples to demonstrate the effectiveness of the method. Then we use this method to investigate the experimental signals from oil–gas–water three-phase flow. The results indicate that the extracted statistic is very sensitive to the change of flow parameters and can gain a quantitatively insight into the dynamic characteristics of different flow patterns. 展开更多
关键词 油气水三相流 表征 LOGISTIC 垂直 动态特性 混沌吸引子 概率分布 统计信息
下载PDF
The Finite Element Analysis for Parallel-wire Capacitance Probe in Small Diameter Two-phase Flow Pipe 被引量:1
12
作者 翟路生 金宁德 +1 位作者 高忠科 黄旭 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第7期813-819,共7页
This paper presents a novel capacitance probe,i.e.,parallel-wire capacitance probe(PWCP),for two-phase flow measurement.Using finite element method(FEM),the sensitivity field of the PWCP is investigated and the optimu... This paper presents a novel capacitance probe,i.e.,parallel-wire capacitance probe(PWCP),for two-phase flow measurement.Using finite element method(FEM),the sensitivity field of the PWCP is investigated and the optimum sensor geometry is determiend in term of the characterisitc parameters.Then,the response of PWCP for the oil-water stratified flow is calculated,and it is found the PWCP has better linearity and sensitivity to the variation of water-layer thickness,and is almost independant of the angle between the oil-water interface and the sensor electrode.Finally,the static experiment for oil-water stratified flow is carried out and the calibration method of liquid holdup is presented. 展开更多
关键词 有限元分析 探头 电容 平行线 小直径 流管 流量测量 有限元法
下载PDF
Measurement of oil volume fraction and velocity distributions in vertical oil-in-water flows using ERT and a local probe 被引量:1
13
作者 李华 王密 +2 位作者 吴应湘 马艺馨 WILLIAMSRichard 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第12期1412-1415,共4页
This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the ... This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%. A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT tech- nique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed. 展开更多
关键词 ERT 电子阻抗 X线断层摄影术 探测器 灵敏度
下载PDF
Displacement of Oil in a Porous Medium on Diphasic Flow by Water Injection
14
作者 Mmadi Salim Mohamed Sosse Ndyaye +2 位作者 Kharouna Talla Cheikh Mbow Aboubaker Chedikh Beye 《Open Journal of Fluid Dynamics》 2020年第1期1-7,共7页
The purpose of this article is to show the role and influence of fluid injection, porosity on two-phase flows in porous media for the purpose of improving and increasing recovery efficiency assisted by oil. An experim... The purpose of this article is to show the role and influence of fluid injection, porosity on two-phase flows in porous media for the purpose of improving and increasing recovery efficiency assisted by oil. An experimental study was carried out in porous media, it is a plexiglass cylinder filled with sands saturated with crude oil. Pressure drop and data processing for two-phase flow are measured and processed using a differential pressure sensor connected to an acquisition computer. It thus makes it possible to determine the pressure difference between the inlet and the outlet of the porous medium over time. In this experiment, the flow rates at the inlet and the outlet of the porous medium were measured as a function of time using a flow rate and a pump. To describe these flows we will use Darcy’s model. 展开更多
关键词 two-phase flow Enhanced Recovery oil PERMEABILITY Porous Media
下载PDF
Study on Flow Unit of Heavy Oil Bottom Water Reservoir with Over-Limited Thickness in Offshore Oilfield
15
作者 Wei Wang Jie Tan +2 位作者 Songru Mu Bo Li Wentong Zhang 《Open Journal of Geology》 2019年第9期507-515,共9页
The upper Ming section of L oilfield is a typical offshore heavy oil bottom-water reservoir with thick fluvial layers. All horizontal wells are developed by natural energy. Due to the few drilling holes and influence ... The upper Ming section of L oilfield is a typical offshore heavy oil bottom-water reservoir with thick fluvial layers. All horizontal wells are developed by natural energy. Due to the few drilling holes and influence by the resolution of seismic data, it is difficult to describe reservoirs with thickness over 20 meters. In this paper, seismic resonance amplitude inversion technology is introduced to restore the real response of thick reservoirs and interbeds by drilling and drilling verification, and the geological bodies with different thickness are displayed by frequency division RGB three primary colors. Flow units of heavy oil reservoirs with bottom water are divided according to the three major factors of interlayer, lithologic internal boundary and water-oil thickness ratio which have the greatest influence on horizontal well development, thick sand bodies are divided into 10 different flow units in three levels, each unit is separated from each other, and the reservoir structure, water-cut characteristics and water-flooding characteristics are different. The reliability of the research is improved by using the dynamic data of horizontal wells and newly drilled passing wells, which provides a basis for tapping the potential of heavy oil reservoirs with bottom water. 展开更多
关键词 Over-Limited THICK Layer INVERSION of Tuned Amplitude Frequency DIVISION RGB Fusion water-oil Thickness Ratio flow Unit
下载PDF
Prediction of curved oil–water interface in horizontal pipes using modified model with dynamic contact angle 被引量:2
16
作者 Hongxin Zhang Lusheng Zhai +2 位作者 Ruoyu Liu Cong Yan Ningde Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期698-711,共14页
In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow... In this study,interface shapes of horizontal oil–water two-phase flow are predicted by using Young-Laplace equation model and minimum energy model.Meanwhile,the interface shapes of horizontal oil–water twophase flow in a 20 mm inner diameter pipe are measured by a novel conductance parallel-wire array probe(CPAP).It is found that,for flow conditions with low water holdup,there is a large deviation between the model-predicted interface shape and the experimentally measured one.Since the variation of pipe wetting characteristics in the process of fluid flow can lead to the changes of the contact angle between the fluid and the pipe wall,the models mentioned above are modified by considering dynamic contact angle.The results indicate that the interface shapes predicted by the modified models present a good consistence with the ones measured by CPAP. 展开更多
关键词 oilwater two-phase flow Curved interface Conductance parallel-wire array probes Dynamic contact angle
下载PDF
TWO-PHASE FLOW FOR A HORIZONTAL WELL PENETRATING A NATURALLY FRACTURED RESERVOIR WITH EDGE WATER INJECTION 被引量:1
17
作者 郭大立 刘慈群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第5期937-942,共6页
TWO-PHASEFLOWFORAHORIZONTALWELLPENETRATINGANATURALLYFRACTUREDRESERVOIRWITHEDGEWATERINJECTIONGuoDali(郭大立)LiuC... TWO-PHASEFLOWFORAHORIZONTALWELLPENETRATINGANATURALLYFRACTUREDRESERVOIRWITHEDGEWATERINJECTIONGuoDali(郭大立)LiuCiqun(刘慈群)(Receive... 展开更多
关键词 HORIZONTAL WELL two-phase flow medium with double-porosityedge water INJECTION characteristic method
下载PDF
THEORETICAL ANALYSIS OF USING AIRFLOW TO PURGE RESIDUAL WATER IN AN INCLINED PIPE
18
作者 沈芳 严宗毅 +1 位作者 赵耀华 Kiyoshi Horii 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第6期694-702,共9页
A refined theoretical analysis for using the spiral airflow and axial airflow to purge residual water in an inclined pipe was presented. The computations reveal that, in most cases, the spiral flow can purge the resid... A refined theoretical analysis for using the spiral airflow and axial airflow to purge residual water in an inclined pipe was presented. The computations reveal that, in most cases, the spiral flow can purge the residual water in the inclined pipe indeed while the axial flow may induce back flow of the water, just as predicted in the experiments presented by Horii and Zhao et al. In addition, the effects of various initial conditions on water purging were studied in detail for both the spiral and axial flow cases. 展开更多
关键词 spiral flow axial flow water PURGING two-phase flow PIPE flow
下载PDF
TWO-PHASE FLOW FOR A HORIZONTAL WELL PENETRATING A NATURALLY FRACTURED RESERVOIR WITH EDGE WATER INJECTION
19
作者 郭大立 刘慈群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第10期937-942,共6页
TWO-PHASEFLOWFORAHORIZONTALWELLPENETRATINGANATURALLYFRACTUREDRESERVOIRWITHEDGEWATERINJECTIONGuoDali(郭大立)LiuC... TWO-PHASEFLOWFORAHORIZONTALWELLPENETRATINGANATURALLYFRACTUREDRESERVOIRWITHEDGEWATERINJECTIONGuoDali(郭大立)LiuCiqun(刘慈群)(Receive... 展开更多
关键词 HORIZONTAL WELL two-phase flow medium with double-porosity EDGE water INJECTION characteristic method
下载PDF
Numerical simulation of fracturing and imbibition in shale oil horizontal wells
20
作者 Rong-Li Xu Tian-Kui Guo +4 位作者 Xiao-Jia Xue Wen-Bin Chen Zhan-Qing Qu Ming Chen Zun-Peng Hu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2981-3001,共21页
The shale oil reservoir is characterized by tight lithology and ultra-low permeability,and its efficient exploitation requires the technology of multi-stage and multi-cluster hydraulic fracturing in horizontal wells a... The shale oil reservoir is characterized by tight lithology and ultra-low permeability,and its efficient exploitation requires the technology of multi-stage and multi-cluster hydraulic fracturing in horizontal wells and shut-in imbibition.After multi-stage and multi-cluster hydraulic fracturing,a complex fracture network is formed,and a large volume of frac fluid is stored within the fracture network.During shut-in,imbibition and exchange between oil and water occurs under the action of the capillary force and osmotic pressure,and the formation pressure builds up in the shale reservoir.On basis of the characteristics of shale oil reservoir,we establish a model of imbibition during fracturing injection and shut-in by coupling oilewater two-phase flow and saline ion diffusion in the hydraulic fractures(HFs)network,natural fractures(NFs)and matrix system under the action of capillary force and osmotic pressure.The DFN method and the multiple continuum method are introduced to characterize fluid flow between the HF and the NF and that between the NF and the matrix respectively,which avoids the problem of a large amount of computation of seepage within the complex fracture.Then,the discrete fracture network(DFN)model and the multiple continuum model are solved with the finite element method,and it is verified in flow field,saturation field and concentration field that the models are accurate and reliable.We propose the imbibition exchange volume for quantitative evaluation of the imbibition degree and a method of calculating the imbibition exchange volume.Simulation of oil and water flow in the fracturing and shut-in stages is performed based on these models.It is found that imbibition in the shale reservoir is driven by mechanisms of pressure difference,capillary force and osmotic pressure.The osmotic pressure and capillary force only cause an increase in the imbibition rate and a reduction in the imbibition equilibrium time and do not lead to variation in the peak of imbibition exchange volume.The imbibition equilibrium time under the action of the capillary force and osmotic pressure is reduced from 150 to 45 d compared with that under the action of the pressure difference.If imbibition equilibrium is reached,low initial water saturation,strong rock compressibility,high formation water salinity and high matrix permeability enhance imbibition and exchange of oil and water in the reservoir.The leakoff volume of frac fluid is generally larger than the imbibition exchanged volume.Leakoff equilibrium occurs slightly earlier than imbibition equilibrium.The imbibition equilibrium time is mainly affected by reservoir permeability and NF density.The number of interconnected fractures mainly affects the frac fluid volume within the hydraulic fracture in the fracturing process.The stimulated reservoir volume(SRV)mainly affects frac fluid imbibition exchange in the shut-in process. 展开更多
关键词 Shale oil Hydraulic fracturing Imbibition exchange volume oilewater two-phase flow Shut-in time
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部